Jia, Yinjun
SIU: A Million-Scale Structural Small Molecule-Protein Interaction Dataset for Unbiased Bioactivity Prediction
Huang, Yanwen, Gao, Bowen, Jia, Yinjun, Ma, Hongbo, Ma, Wei-Ying, Zhang, Ya-Qin, Lan, Yanyan
Small molecules play a pivotal role in modern medicine, and scrutinizing their interactions with protein targets is essential for the discovery and development of novel, life-saving therapeutics. The term "bioactivity" encompasses various biological effects resulting from these interactions, including both binding and functional responses. The magnitude of bioactivity dictates the therapeutic or toxic pharmacological outcomes of small molecules, rendering accurate bioactivity prediction crucial for the development of safe and effective drugs. However, existing structural datasets of small molecule-protein interactions are often limited in scale and lack systematically organized bioactivity labels, thereby impeding our understanding of these interactions and precise bioactivity prediction. In this study, we introduce a comprehensive dataset of small molecule-protein interactions, consisting of over a million binding structures, each annotated with real biological activity labels. This dataset is designed to facilitate unbiased bioactivity prediction. We evaluated several classical models on this dataset, and the results demonstrate that the task of unbiased bioactivity prediction is challenging yet essential.
MoleculeCLA: Rethinking Molecular Benchmark via Computational Ligand-Target Binding Analysis
Feng, Shikun, Zheng, Jiaxin, Jia, Yinjun, Huang, Yanwen, Zhou, Fengfeng, Ma, Wei-Ying, Lan, Yanyan
Molecular representation learning is pivotal for various molecular property prediction tasks related to drug discovery. Robust and accurate benchmarks are essential for refining and validating current methods. Existing molecular property benchmarks derived from wet experiments, however, face limitations such as data volume constraints, unbalanced label distribution, and noisy labels. To address these issues, we construct a large-scale and precise molecular representation dataset of approximately 140,000 small molecules, meticulously designed to capture an extensive array of chemical, physical, and biological properties, derived through a robust computational ligand-target binding analysis pipeline. We conduct extensive experiments on various deep learning models, demonstrating that our dataset offers significant physicochemical interpretability to guide model development and design. Notably, the dataset's properties are linked to binding affinity metrics, providing additional insights into model performance in drug-target interaction tasks. We believe this dataset will serve as a more accurate and reliable benchmark for molecular representation learning, thereby expediting progress in the field of artificial intelligence-driven drug discovery.
Multi-level Interaction Modeling for Protein Mutational Effect Prediction
Mo, Yuanle, Hong, Xin, Gao, Bowen, Jia, Yinjun, Lan, Yanyan
Protein-protein interactions are central mediators in many biological processes. Accurately predicting the effects of mutations on interactions is crucial for guiding the modulation of these interactions, thereby playing a significant role in therapeutic development and drug discovery. Mutations generally affect interactions hierarchically across three levels: mutated residues exhibit different sidechain conformations, which lead to changes in the backbone conformation, eventually affecting the binding affinity between proteins. However, existing methods typically focus only on sidechain-level interaction modeling, resulting in suboptimal predictions. In this work, we propose a self-supervised multi-level pre-training framework, ProMIM, to fully capture all three levels of interactions with well-designed pretraining objectives. Experiments show ProMIM outperforms all the baselines on the standard benchmark, especially on mutations where significant changes in backbone conformations may occur. In addition, leading results from zero-shot evaluations for SARS-CoV-2 mutational effect prediction and antibody optimization underscore the potential of ProMIM as a powerful next-generation tool for developing novel therapeutic approaches and new drugs.
Protein-ligand binding representation learning from fine-grained interactions
Feng, Shikun, Li, Minghao, Jia, Yinjun, Ma, Weiying, Lan, Yanyan
The binding between proteins and ligands plays a crucial role in the realm of drug discovery. Previous deep learning approaches have shown promising results over traditional computationally intensive methods, but resulting in poor generalization due to limited supervised data. In this paper, we propose to learn protein-ligand binding representation in a self-supervised learning manner. Different from existing pre-training approaches which treat proteins and ligands individually, we emphasize to discern the intricate binding patterns from fine-grained interactions. Specifically, this self-supervised learning problem is formulated as a prediction of the conclusive binding complex structure given a pocket and ligand with a Transformer based interaction module, which naturally emulates the binding process. To ensure the representation of rich binding information, we introduce two pre-training tasks, i.e. atomic pairwise distance map prediction and mask ligand reconstruction, which comprehensively model the fine-grained interactions from both structure and feature space. Extensive experiments have demonstrated the superiority of our method across various binding tasks, including protein-ligand affinity prediction, virtual screening and protein-ligand docking. Understanding the interaction between proteins and ligands is a crucial task in drug discovery, which involves predicting whether the proteins and ligands can bind together or determining the binding affinity and pose of a protein-ligand pair.
DrugCLIP: Contrastive Protein-Molecule Representation Learning for Virtual Screening
Gao, Bowen, Qiang, Bo, Tan, Haichuan, Ren, Minsi, Jia, Yinjun, Lu, Minsi, Liu, Jingjing, Ma, Weiying, Lan, Yanyan
Virtual screening, which identifies potential drugs from vast compound databases to bind with a particular protein pocket, is a critical step in AI-assisted drug discovery. Traditional docking methods are highly time-consuming, and can only work with a restricted search library in real-life applications. Recent supervised learning approaches using scoring functions for binding-affinity prediction, although promising, have not yet surpassed docking methods due to their strong dependency on limited data with reliable binding-affinity labels. In this paper, we propose a novel contrastive learning framework, DrugCLIP, by reformulating virtual screening as a dense retrieval task and employing contrastive learning to align representations of binding protein pockets and molecules from a large quantity of pairwise data without explicit binding-affinity scores. We also introduce a biological-knowledge inspired data augmentation strategy to learn better protein-molecule representations. Extensive experiments show that DrugCLIP significantly outperforms traditional docking and supervised learning methods on diverse virtual screening benchmarks with highly reduced computation time, especially in zero-shot setting.