Goto

Collaborating Authors

 Ji, Yu


Predicting Preschoolers' Externalizing Problems with Mother-Child Interaction Dynamics and Deep Learning

arXiv.org Artificial Intelligence

Objective: Predicting children's future levels of externalizing problems helps to identify children at risk and guide targeted prevention. Existing studies have shown that mothers providing support in response to children's dysregulation was associated with children's lower levels of externalizing problems. The current study aims to evaluate and improve the accuracy of predicting children's externalizing problems with mother-child interaction dynamics. Method: This study used mother-child interaction dynamics during a challenging puzzle task to predict children's externalizing problems six months later (N=101, 46 boys, Mage=57.41 months, SD=6.58). Performance of the Residual Dynamic Structural Equation Model (RDSEM) was compared with the Attention-based Sequential Behavior Interaction Modeling (ASBIM) model, developed using the deep learning techniques. Results: The RDSEM revealed that children whose mothers provided more autonomy support after increases of child defeat had lower levels of externalizing problems. Five-fold cross-validation showed that the RDSEM had good prediction accuracy. The ASBIM model further improved prediction accuracy, especially after including child inhibitory control as a personalized individual feature. Conclusions: The dynamic process of mother-child interaction provides important information for predicting children's externalizing problems, especially maternal autonomy supportive response to child defeat. The deep learning model is a useful tool to further improve prediction accuracy.


DECIDER: A Dual-System Rule-Controllable Decoding Framework for Language Generation

arXiv.org Artificial Intelligence

Constrained decoding approaches aim to control the meaning or style of text generated by a Pre-trained Language Model (PLM) using specific target words during inference. However, these methods often guide plausible continuations by greedily selecting targets, which, while completing the task, may disrupt the natural patterns of human language generation. In this work, we propose a novel decoding framework, DECIDER, which enables us to program rules on how we complete tasks to control a PLM. Differing from previous work, our framework transforms the encouragement of target words into the encouragement of all words that satisfy the rule. Specifically, DECIDER is a dual system where a PLM is equipped with a First-OrderLogic (FOL) reasoner to express and evaluate the rules, and a decision function to merge the outputs from both systems to steer the generation. Experiments on CommonGen and PersonaChat demonstrate that DECIDER can effectively follow given rules to achieve generation tasks in a more human-like manner.


Is ChatGPT a Good Personality Recognizer? A Preliminary Study

arXiv.org Artificial Intelligence

In recent years, personality has been regarded as a valuable personal factor being incorporated into numerous tasks such as sentiment analysis and product recommendation. This has led to widespread attention to text-based personality recognition task, which aims to identify an individual's personality based on given text. Considering that ChatGPT has recently exhibited remarkable abilities on various natural language processing tasks, we provide a preliminary evaluation of ChatGPT on text-based personality recognition task for generating effective personality data. Concretely, we employ a variety of prompting strategies to explore ChatGPT's ability in recognizing personality from given text, especially the level-oriented prompting strategy we designed for guiding ChatGPT in analyzing given text at a specified level. The experimental results on two representative real-world datasets reveal that ChatGPT with zero-shot chain-of-thought prompting exhibits impressive personality recognition ability and is capable to provide natural language explanations through text-based logical reasoning. Furthermore, by employing the level-oriented prompting strategy to optimize zero-shot chain-of-thought prompting, the performance gap between ChatGPT and corresponding state-of-the-art model has been narrowed even more. However, we observe that ChatGPT shows unfairness towards certain sensitive demographic attributes such as gender and age. Additionally, we discover that eliciting the personality recognition ability of ChatGPT helps improve its performance on personality-related downstream tasks such as sentiment classification and stress prediction.


Metacognition-Enhanced Few-Shot Prompting With Positive Reinforcement

arXiv.org Artificial Intelligence

Few-shot prompting elicits the remarkable abilities of large language models by equipping them with a few demonstration examples in the input. However, the traditional method of providing large language models with all demonstration input-output pairs at once may not effectively guide large language models to learn the specific input-output mapping relationship. In this paper, inspired by the regulatory and supportive role of metacognition in students' learning, we propose a novel metacognition-enhanced few-shot prompting, which guides large language models to reflect on their thought processes to comprehensively learn the given demonstration examples. Furthermore, considering that positive reinforcement can improve students' learning motivation, we introduce positive reinforcement into our metacognition-enhanced few-shot prompting to promote the few-shot learning of large language models by providing response-based positive feedback. The experimental results on two real-world datasets show that our metacognition-enhanced few-shot prompting with positive reinforcement surpasses traditional few-shot prompting in classification accuracy and macro F1.


TETRIS: TilE-matching the TRemendous Irregular Sparsity

Neural Information Processing Systems

Compressing neural networks by pruning weights with small magnitudes can significantly reduce the computation and storage cost. Although pruning makes the model smaller, it is difficult to get practical speedup in modern computing platforms such as CPU and GPU due to the irregularity. Structural pruning has attract a lot of research interest to make sparsity hardware-friendly. Increasing the sparsity granularity can lead to better hardware utilization, but it will compromise the sparsity for maintaining accuracy. In this work, we propose a novel method, TETRIS, to achieve both better hardware utilization and higher sparsity. Just like a tile-matching game, we cluster the irregularly distributed weights with small value into structured groups by reordering the input/output dimension and structurally prune them. Results show that it can achieve comparable sparsity with the irregular element-wise pruning and demonstrate negligible accuracy loss. The experiments also shows ideal speedup, which is proportional to the sparsity, on GPU platforms. Our proposed method provides a new solution toward algorithm and architecture co-optimization for accuracy-efficiency trade-off.


TETRIS: TilE-matching the TRemendous Irregular Sparsity

Neural Information Processing Systems

Compressing neural networks by pruning weights with small magnitudes can significantly reduce the computation and storage cost. Although pruning makes the model smaller, it is difficult to get practical speedup in modern computing platforms such as CPU and GPU due to the irregularity. Structural pruning has attract a lot of research interest to make sparsity hardware-friendly. Increasing the sparsity granularity can lead to better hardware utilization, but it will compromise the sparsity for maintaining accuracy. In this work, we propose a novel method, TETRIS, to achieve both better hardware utilization and higher sparsity. Just like a tile-matching game, we cluster the irregularly distributed weights with small value into structured groups by reordering the input/output dimension and structurally prune them. Results show that it can achieve comparable sparsity with the irregular element-wise pruning and demonstrate negligible accuracy loss. The experiments also shows ideal speedup, which is proportional to the sparsity, on GPU platforms. Our proposed method provides a new solution toward algorithm and architecture co-optimization for accuracy-efficiency trade-off.