Ji, Xiaoyu
PhantomLiDAR: Cross-modality Signal Injection Attacks against LiDAR
Jin, Zizhi, Jiang, Qinhong, Lu, Xuancun, Yan, Chen, Ji, Xiaoyu, Xu, Wenyuan
LiDAR (Light Detection and Ranging) is a pivotal sensor for autonomous driving, offering precise 3D spatial information. Previous signal attacks against LiDAR systems mainly exploit laser signals. In this paper, we investigate the possibility of cross-modality signal injection attacks, i.e., injecting intentional electromagnetic interference (IEMI) to manipulate LiDAR output. Our insight is that the internal modules of a LiDAR, i.e., the laser receiving circuit, the monitoring sensors, and the beam-steering modules, even with strict electromagnetic compatibility (EMC) testing, can still couple with the IEMI attack signals and result in the malfunction of LiDAR systems. Based on the above attack surfaces, we propose the PhantomLiDAR attack, which manipulates LiDAR output in terms of Points Interference, Points Injection, Points Removal, and even LiDAR Power-Off. We evaluate and demonstrate the effectiveness of PhantomLiDAR with both simulated and real-world experiments on five COTS LiDAR systems. We also conduct feasibility experiments in real-world moving scenarios. We provide potential defense measures that can be implemented at both the sensor level and the vehicle system level to mitigate the risks associated with IEMI attacks. Video demonstrations can be viewed at https://sites.google.com/view/phantomlidar.
SafeGen: Mitigating Unsafe Content Generation in Text-to-Image Models
Li, Xinfeng, Yang, Yuchen, Deng, Jiangyi, Yan, Chen, Chen, Yanjiao, Ji, Xiaoyu, Xu, Wenyuan
Text-to-image (T2I) models, such as Stable Diffusion, have exhibited remarkable performance in generating high-quality images from text descriptions in recent years. However, text-to-image models may be tricked into generating not-safe-for-work (NSFW) content, particularly in sexual scenarios. Existing countermeasures mostly focus on filtering inappropriate inputs and outputs, or suppressing improper text embeddings, which can block explicit NSFW-related content (e.g., naked or sexy) but may still be vulnerable to adversarial prompts inputs that appear innocent but are ill-intended. In this paper, we present SafeGen, a framework to mitigate unsafe content generation by text-to-image models in a text-agnostic manner. The key idea is to eliminate unsafe visual representations from the model regardless of the text input. In this way, the text-to-image model is resistant to adversarial prompts since unsafe visual representations are obstructed from within. Extensive experiments conducted on four datasets demonstrate SafeGen's effectiveness in mitigating unsafe content generation while preserving the high-fidelity of benign images. SafeGen outperforms eight state-of-the-art baseline methods and achieves 99.1% sexual content removal performance. Furthermore, our constructed benchmark of adversarial prompts provides a basis for future development and evaluation of anti-NSFW-generation methods.
Exploring Adversarial Robustness of LiDAR-Camera Fusion Model in Autonomous Driving
Yang, Bo, Ji, Xiaoyu, Jin, Zizhi, Cheng, Yushi, Xu, Wenyuan
Our study assesses the adversarial robustness of LiDAR-camera fusion models in 3D object detection. We introduce an attack technique that, by simply adding a limited number of physically constrained adversarial points above a car, can make the car undetectable by the fusion model. Experimental results reveal that even without changes to the image data channel, the fusion model can be deceived solely by manipulating the LiDAR data channel. This finding raises safety concerns in the field of autonomous driving. Further, we explore how the quantity of adversarial points, the distance between the front-near car and the LiDAR-equipped car, and various angular factors affect the attack success rate. We believe our research can contribute to the understanding of multi-sensor robustness, offering insights and guidance to enhance the safety of autonomous driving.
Chat-PM: A Class of Composite Hybrid Aerial/Terrestrial Precise Manipulator
Ding, Yihang, Ji, Xiaoyu, Zhang, Lixian, Dong, Yifei, Wu, Tong, Han, Chengzhe
This paper concentrates on the development of Chat-PM, a class of composite hybrid aerial/terrestrial manipulator, in concern with composite configuration design, dynamics modeling, motion control and force estimation. Compared with existing aerial or terrestrial mobile manipulators, Chat-PM demonstrates advantages in terms of reachability, energy efficiency and manipulation precision. To achieve precise manipulation in terrestrial mode, the dynamics is analyzed with consideration of surface contact, based on which a cascaded controller is designed with compensation for the interference force and torque from the arm. Benefiting from the kinematic constraints caused by the surface contact, the position deviation and the vehicle vibration are effectively decreased, resulting in higher control precision of the end gripper. For manipulation on surfaces with unknown inclination angles, the moving horizon estimation (MHE) is exploited to obtain the precise estimations of force and inclination angle, which are used in the control loop to compensate for the effect of the unknown surface. Real-world experiments are performed to evaluate the superiority of the developed manipulator and the proposed controllers.