Ji, Xiang
Speeding Up Question Answering Task of Language Models via Inverted Index
Ji, Xiang, Sungu-Eryilmaz, Yesim, Momeni, Elaheh, Rawassizadeh, Reza
Natural language processing applications, such as conversational agents and their question-answering capabilities, are widely used in the real world. Despite the wide popularity of large language models (LLMs), few real-world conversational agents take advantage of LLMs. Extensive resources consumed by LLMs disable developers from integrating them into end-user applications. In this study, we leverage an inverted indexing mechanism combined with LLMs to improve the efficiency of question-answering models for closed-domain questions. Our experiments show that using the index improves the average response time by 97.44%. In addition, due to the reduced search scope, the average BLEU score improved by 0.23 while using the inverted index.
Bootstrapping Statistical Inference for Off-Policy Evaluation
Hao, Botao, Ji, Xiang, Duan, Yaqi, Lu, Hao, Szepesvรกri, Csaba, Wang, Mengdi
Bootstrapping provides a flexible and effective approach for assessing the quality of batch reinforcement learning, yet its theoretical property is less understood. In this paper, we study the use of bootstrapping in off-policy evaluation (OPE), and in particular, we focus on the fitted Q-evaluation (FQE) that is known to be minimax-optimal in the tabular and linear-model cases. We propose a bootstrapping FQE method for inferring the distribution of the policy evaluation error and show that this method is asymptotically efficient and distributionally consistent for off-policy statistical inference. To overcome the computation limit of bootstrapping, we further adapt a subsampling procedure that improves the runtime by an order of magnitude. We numerically evaluate the bootrapping method in classical RL environments for confidence interval estimation, estimating the variance of off-policy evaluator, and estimating the correlation between multiple off-policy evaluators.
Urban Bike Lane Planning with Bike Trajectories: Models, Algorithms, and a Real-World Case Study
Liu, Sheng, Shen, Zuo-Jun Max, Ji, Xiang
We study an urban bike lane planning problem based on the fine-grained bike trajectory data, which is made available by smart city infrastructure such as bike-sharing systems. The key decision is where to build bike lanes in the existing road network. As bike-sharing systems become widespread in the metropolitan areas over the world, bike lanes are being planned and constructed by many municipal governments to promote cycling and protect cyclists. Traditional bike lane planning approaches often rely on surveys and heuristics. We develop a general and novel optimization framework to guide the bike lane planning from bike trajectories. We formalize the bike lane planning problem in view of the cyclists' utility functions and derive an integer optimization model to maximize the utility. To capture cyclists' route choices, we develop a bilevel program based on the Multinomial Logit model. We derive structural properties about the base model and prove that the Lagrangian dual of the bike lane planning model is polynomial-time solvable. Furthermore, we reformulate the route choice based planning model as a mixed integer linear program using a linear approximation scheme. We develop tractable formulations and efficient algorithms to solve the large-scale optimization problem. Via a real-world case study with a city government, we demonstrate the efficiency of the proposed algorithms and quantify the trade-off between the coverage of bike trips and continuity of bike lanes. We show how the network topology evolves according to the utility functions and highlight the importance of understanding cyclists' route choices. The proposed framework drives the data-driven urban planning scheme in smart city operations management.