Ji, Taoran
CryptoPulse: Short-Term Cryptocurrency Forecasting with Dual-Prediction and Cross-Correlated Market Indicators
Kumar, Amit, Ji, Taoran
--Cryptocurrencies fluctuate in markets with high price volatility, which becomes a great challenge for investors. T o aid investors in making informed decisions, systems predicting cryptocurrency market movements have been developed, commonly framed as feature-driven regression problems that focus solely on historical patterns favored by domain experts. However, these methods overlook three critical factors that significantly influence the cryptocurrency market dynamics: 1) the macro investing environment, reflected in major cryp-tocurrency fluctuations, which can affect investors collaborative behaviors, 2) overall market sentiment, heavily influenced by news, which impacts investors strategies, and 3) technical indicators, which offer insights into overbought or oversold conditions, momentum, and market trends are often ignored despite their relevance in shaping short-term price movements. In this paper, we propose a dual prediction mechanism that enables the model to forecast the next day's closing price by incorporating macroeconomic fluctuations, technical indicators, and individual cryptocurrency price changes. Furthermore, we introduce a novel refinement mechanism that enhances the prediction through market sentiment-based rescaling and fusion. In experiments, the proposed model achieves state-of-the-art performance (SOT A), consistently outperforming ten comparison methods in most cases. Cryptocurrencies have recently become a topic of conversation due to their great impact on the financial world. This heightened attention is fueled by several factors including the sudden drops and shocks in cryptocurrency markets [1], which offer opportunities for substantial returns, and the innovative technologies underpinning these assets, such as Blockchain [2], [3]. Unlike traditional financial markets such as bonds and stocks, the cryptocurrency market is characterized by a comparatively smaller market capitalization and pronounced volatility in short-term fluctuations [4], creating a unique and challenging investment landscape. This volatility stems from a complex interplay of factors that perpetuate a self-fulfilling cycle.
Don't Go To Extremes: Revealing the Excessive Sensitivity and Calibration Limitations of LLMs in Implicit Hate Speech Detection
Zhang, Min, He, Jianfeng, Ji, Taoran, Lu, Chang-Tien
The fairness and trustworthiness of Large Language Models (LLMs) are receiving increasing attention. Implicit hate speech, which employs indirect language to convey hateful intentions, occupies a significant portion of practice. However, the extent to which LLMs effectively address this issue remains insufficiently examined. This paper delves into the capability of LLMs to detect implicit hate speech (Classification Task) and express confidence in their responses (Calibration Task). Our evaluation meticulously considers various prompt patterns and mainstream uncertainty estimation methods. Our findings highlight that LLMs exhibit two extremes: (1) LLMs display excessive sensitivity towards groups or topics that may cause fairness issues, resulting in misclassifying benign statements as hate speech. (2) LLMs' confidence scores for each method excessively concentrate on a fixed range, remaining unchanged regardless of the dataset's complexity. Consequently, the calibration performance is heavily reliant on primary classification accuracy. These discoveries unveil new limitations of LLMs, underscoring the need for caution when optimizing models to ensure they do not veer towards extremes. This serves as a reminder to carefully consider sensitivity and confidence in the pursuit of model fairness.
Stock Movement and Volatility Prediction from Tweets, Macroeconomic Factors and Historical Prices
Wang, Shengkun, Bai, YangXiao, Ji, Taoran, Fu, Kaiqun, Wang, Linhan, Lu, Chang-Tien
Predicting stock market is vital for investors and policymakers, acting as a barometer of the economic health. We leverage social media data, a potent source of public sentiment, in tandem with macroeconomic indicators as government-compiled statistics, to refine stock market predictions. However, prior research using tweet data for stock market prediction faces three challenges. First, the quality of tweets varies widely. While many are filled with noise and irrelevant details, only a few genuinely mirror the actual market scenario. Second, solely focusing on the historical data of a particular stock without considering its sector can lead to oversight. Stocks within the same industry often exhibit correlated price behaviors. Lastly, simply forecasting the direction of price movement without assessing its magnitude is of limited value, as the extent of the rise or fall truly determines profitability. In this paper, diverging from the conventional methods, we pioneer an ECON. The framework has following advantages: First, ECON has an adept tweets filter that efficiently extracts and decodes the vast array of tweet data. Second, ECON discerns multi-level relationships among stocks, sectors, and macroeconomic factors through a self-aware mechanism in semantic space. Third, ECON offers enhanced accuracy in predicting substantial stock price fluctuations by capitalizing on stock price movement. We showcase the state-of-the-art performance of our proposed model using a dataset, specifically curated by us, for predicting stock market movements and volatility.
ALERTA-Net: A Temporal Distance-Aware Recurrent Networks for Stock Movement and Volatility Prediction
Wang, Shengkun, Bai, YangXiao, Fu, Kaiqun, Wang, Linhan, Lu, Chang-Tien, Ji, Taoran
For both investors and policymakers, forecasting the stock market is essential as it serves as an indicator of economic well-being. To this end, we harness the power of social media data, a rich source of public sentiment, to enhance the accuracy of stock market predictions. Diverging from conventional methods, we pioneer an approach that integrates sentiment analysis, macroeconomic indicators, search engine data, and historical prices within a multi-attention deep learning model, masterfully decoding the complex patterns inherent in the data. We showcase the state-of-the-art performance of our proposed model using a dataset, specifically curated by us, for predicting stock market movements and volatility.
Bridging the Gap between Spatial and Spectral Domains: A Unified Framework for Graph Neural Networks
Chen, Zhiqian, Chen, Fanglan, Zhang, Lei, Ji, Taoran, Fu, Kaiqun, Zhao, Liang, Chen, Feng, Wu, Lingfei, Aggarwal, Charu, Lu, Chang-Tien
Deep learning's performance has been extensively recognized recently. Graph neural networks (GNNs) are designed to deal with graph-structural data that classical deep learning does not easily manage. Since most GNNs were created using distinct theories, direct comparisons are impossible. Prior research has primarily concentrated on categorizing existing models, with little attention paid to their intrinsic connections. The purpose of this study is to establish a unified framework that integrates GNNs based on spectral graph and approximation theory. The framework incorporates a strong integration between spatial- and spectral-based GNNs while tightly associating approaches that exist within each respective domain.
Patent Citation Dynamics Modeling via Multi-Attention Recurrent Networks
Ji, Taoran, Chen, Zhiqian, Self, Nathan, Fu, Kaiqun, Lu, Chang-Tien, Ramakrishnan, Naren
Modeling and forecasting forward citations to a patent is a central task for the discovery of emerging technologies and for measuring the pulse of inventive progress. Conventional methods for forecasting these forward citations cast the problem as analysis of temporal point processes which rely on the conditional intensity of previously received citations. Recent approaches model the conditional intensity as a chain of recurrent neural networks to capture memory dependency in hopes of reducing the restrictions of the parametric form of the intensity function. For the problem of patent citations, we observe that forecasting a patent's chain of citations benefits from not only the patent's history itself but also from the historical citations of assignees and inventors associated with that patent. In this paper, we propose a sequence-to-sequence model which employs an attention-of-attention mechanism to capture the dependencies of these multiple time sequences. Furthermore, the proposed model is able to forecast both the timestamp and the category of a patent's next citation. Extensive experiments on a large patent citation dataset collected from USPTO demonstrate that the proposed model outperforms state-of-the-art models at forward citation forecasting.