Goto

Collaborating Authors

 Ji, Jianchao


MoralBench: Moral Evaluation of LLMs

arXiv.org Artificial Intelligence

In the rapidly evolving field of artificial intelligence, large language models (LLMs) have emerged as powerful tools for a myriad of applications, from natural language processing to decision-making support systems. However, as these models become increasingly integrated into societal frameworks, the imperative to ensure they operate within ethical and moral boundaries has never been more critical. This paper introduces a novel benchmark designed to measure and compare the moral reasoning capabilities of LLMs. We present the first comprehensive dataset specifically curated to probe the moral dimensions of LLM outputs, addressing a wide range of ethical dilemmas and scenarios reflective of real-world complexities. The main contribution of this work lies in the development of benchmark datasets and metrics for assessing the moral identity of LLMs, which accounts for nuance, contextual sensitivity, and alignment with human ethical standards. Our methodology involves a multi-faceted approach, combining quantitative analysis with qualitative insights from ethics scholars to ensure a thorough evaluation of model performance. By applying our benchmark across several leading LLMs, we uncover significant variations in moral reasoning capabilities of different models. These findings highlight the importance of considering moral reasoning in the development and evaluation of LLMs, as well as the need for ongoing research to address the biases and limitations uncovered in our study.


BattleAgent: Multi-modal Dynamic Emulation on Historical Battles to Complement Historical Analysis

arXiv.org Artificial Intelligence

This paper presents BattleAgent, an emulation system that combines the Large Vision-Language Model and Multi-agent System. This novel system aims to simulate complex dynamic interactions among multiple agents, as well as between agents and their environments, over a period of time. It emulates both the decision-making processes of leaders and the viewpoints of ordinary participants, such as soldiers. The emulation showcases the current capabilities of agents, featuring fine-grained multi-modal interactions between agents and landscapes. It develops customizable agent structures to meet specific situational requirements, for example, a variety of battle-related activities like scouting and trench digging. These components collaborate to recreate historical events in a lively and comprehensive manner while offering insights into the thoughts and feelings of individuals from diverse viewpoints. The technological foundations of BattleAgent establish detailed and immersive settings for historical battles, enabling individual agents to partake in, observe, and dynamically respond to evolving battle scenarios. This methodology holds the potential to substantially deepen our understanding of historical events, particularly through individual accounts. Such initiatives can also aid historical research, as conventional historical narratives often lack documentation and prioritize the perspectives of decision-makers, thereby overlooking the experiences of ordinary individuals. BattelAgent illustrates AI's potential to revitalize the human aspect in crucial social events, thereby fostering a more nuanced collective understanding and driving the progressive development of human society.


PAP-REC: Personalized Automatic Prompt for Recommendation Language Model

arXiv.org Artificial Intelligence

Recently emerged prompt-based Recommendation Language Models (RLM) can solve multiple recommendation tasks uniformly. The RLMs make full use of the inherited knowledge learned from the abundant pre-training data to solve the downstream recommendation tasks by prompts, without introducing additional parameters or network training. However, handcrafted prompts require significant expertise and human effort since slightly rewriting prompts may cause massive performance changes. In this paper, we propose PAP-REC, a framework to generate the Personalized Automatic Prompt for RECommendation language models to mitigate the inefficiency and ineffectiveness problems derived from manually designed prompts. Specifically, personalized automatic prompts allow different users to have different prompt tokens for the same task, automatically generated using a gradient-based method. One challenge for personalized automatic prompt generation for recommendation language models is the extremely large search space, leading to a long convergence time. To effectively and efficiently address the problem, we develop surrogate metrics and leverage an alternative updating schedule for prompting recommendation language models. Experimental results show that our PAP-REC framework manages to generate personalized prompts, and the automatically generated prompts outperform manually constructed prompts and also outperform various baseline recommendation models. The source code of the work is available at https://github.com/rutgerswiselab/PAP-REC.


War and Peace (WarAgent): Large Language Model-based Multi-Agent Simulation of World Wars

arXiv.org Artificial Intelligence

Can we avoid wars at the crossroads of history? This question has been pursued by individuals, scholars, policymakers, and organizations throughout human history. In this research, we attempt to answer the question based on the recent advances of Artificial Intelligence (AI) and Large Language Models (LLMs). We propose \textbf{WarAgent}, an LLM-powered multi-agent AI system, to simulate the participating countries, their decisions, and the consequences, in historical international conflicts, including the World War I (WWI), the World War II (WWII), and the Warring States Period (WSP) in Ancient China. By evaluating the simulation effectiveness, we examine the advancements and limitations of cutting-edge AI systems' abilities in studying complex collective human behaviors such as international conflicts under diverse settings. In these simulations, the emergent interactions among agents also offer a novel perspective for examining the triggers and conditions that lead to war. Our findings offer data-driven and AI-augmented insights that can redefine how we approach conflict resolution and peacekeeping strategies. The implications stretch beyond historical analysis, offering a blueprint for using AI to understand human history and possibly prevent future international conflicts. Code and data are available at \url{https://github.com/agiresearch/WarAgent}.


OpenAGI: When LLM Meets Domain Experts

arXiv.org Artificial Intelligence

Human Intelligence (HI) excels at combining basic skills to solve complex tasks. This capability is vital for Artificial Intelligence (AI) and should be embedded in comprehensive AI Agents, enabling them to harness expert models for complex task-solving towards Artificial General Intelligence (AGI). Large Language Models (LLMs) show promising learning and reasoning abilities, and can effectively use external models, tools, plugins, or APIs to tackle complex problems. In this work, we introduce OpenAGI, an open-source AGI research and development platform designed for solving multi-step, real-world tasks. Specifically, OpenAGI uses a dual strategy, integrating standard benchmark tasks for benchmarking and evaluation, and open-ended tasks including more expandable models, tools, plugins, or APIs for creative problem-solving. Tasks are presented as natural language queries to the LLM, which then selects and executes appropriate models. We also propose a Reinforcement Learning from Task Feedback (RLTF) mechanism that uses task results to improve the LLM's task-solving ability, which creates a self-improving AI feedback loop. While we acknowledge that AGI is a broad and multifaceted research challenge with no singularly defined solution path, the integration of LLMs with domain-specific expert models, inspired by mirroring the blend of general and specialized intelligence in humans, offers a promising approach towards AGI.


User-Controllable Recommendation via Counterfactual Retrospective and Prospective Explanations

arXiv.org Artificial Intelligence

Modern recommender systems utilize users' historical behaviors to generate personalized recommendations. However, these systems often lack user controllability, leading to diminished user satisfaction and trust in the systems. Acknowledging the recent advancements in explainable recommender systems that enhance users' understanding of recommendation mechanisms, we propose leveraging these advancements to improve user controllability. In this paper, we present a user-controllable recommender system that seamlessly integrates explainability and controllability within a unified framework. By providing both retrospective and prospective explanations through counterfactual reasoning, users can customize their control over the system by interacting with these explanations. Furthermore, we introduce and assess two attributes of controllability in recommendation systems: the complexity of controllability and the accuracy of controllability. Experimental evaluations on MovieLens and Yelp datasets substantiate the effectiveness of our proposed framework. Additionally, our experiments demonstrate that offering users control options can potentially enhance recommendation accuracy in the future. Source code and data are available at \url{https://github.com/chrisjtan/ucr}.


GenRec: Large Language Model for Generative Recommendation

arXiv.org Artificial Intelligence

In recent years, large language models (LLM) have emerged as powerful tools for diverse natural language processing tasks. However, their potential for recommender systems under the generative recommendation paradigm remains relatively unexplored. This paper presents an innovative approach to recommendation systems using large language models (LLMs) based on text data. In this paper, we present a novel LLM for generative recommendation (GenRec) that utilized the expressive power of LLM to directly generate the target item to recommend, rather than calculating ranking score for each candidate item one by one as in traditional discriminative recommendation. GenRec uses LLM's understanding ability to interpret context, learn user preferences, and generate relevant recommendation. Our proposed approach leverages the vast knowledge encoded in large language models to accomplish recommendation tasks. We first we formulate specialized prompts to enhance the ability of LLM to comprehend recommendation tasks. Subsequently, we use these prompts to fine-tune the LLaMA backbone LLM on a dataset of user-item interactions, represented by textual data, to capture user preferences and item characteristics. Our research underscores the potential of LLM-based generative recommendation in revolutionizing the domain of recommendation systems and offers a foundational framework for future explorations in this field. We conduct extensive experiments on benchmark datasets, and the experiments shows that our GenRec has significant better results on large dataset.


Counterfactual Collaborative Reasoning

arXiv.org Artificial Intelligence

Causal reasoning and logical reasoning are two important types of reasoning abilities for human intelligence. However, their relationship has not been extensively explored under machine intelligence context. In this paper, we explore how the two reasoning abilities can be jointly modeled to enhance both accuracy and explainability of machine learning models. More specifically, by integrating two important types of reasoning ability -- counterfactual reasoning and (neural) logical reasoning -- we propose Counterfactual Collaborative Reasoning (CCR), which conducts counterfactual logic reasoning to improve the performance. In particular, we use recommender system as an example to show how CCR alleviate data scarcity, improve accuracy and enhance transparency. Technically, we leverage counterfactual reasoning to generate "difficult" counterfactual training examples for data augmentation, which -- together with the original training examples -- can enhance the model performance. Since the augmented data is model irrelevant, they can be used to enhance any model, enabling the wide applicability of the technique. Besides, most of the existing data augmentation methods focus on "implicit data augmentation" over users' implicit feedback, while our framework conducts "explicit data augmentation" over users explicit feedback based on counterfactual logic reasoning. Experiments on three real-world datasets show that CCR achieves better performance than non-augmented models and implicitly augmented models, and also improves model transparency by generating counterfactual explanations.


UP5: Unbiased Foundation Model for Fairness-aware Recommendation

arXiv.org Artificial Intelligence

Recent advancements in foundation models such as large language models (LLM) have propelled them to the forefront of recommender systems (RS). Moreover, fairness in RS is critical since many users apply it for decision-making and demand fulfillment. However, at present, there is a lack of understanding regarding the level of fairness exhibited by recommendation foundation models and the appropriate methods for equitably treating different groups of users in foundation models. In this paper, we focus on user-side unfairness problem and show through a thorough examination that there is unfairness involved in LLMs that lead to unfair recommendation results. To eliminate bias from LLM for fairness-aware recommendation, we introduce a novel Unbiased P5 (UP5) foundation model based on Counterfactually-Fair-Prompting (CFP) techniques. CFP includes two sub-modules: a personalized prefix prompt that enhances fairness with respect to individual sensitive attributes, and a Prompt Mixture that integrates multiple counterfactually-fair prompts for a set of sensitive attributes. Experiments are conducted on two real-world datasets, MovieLens-1M and Insurance, and results are compared with both matching-based and sequential-based fairness-aware recommendation models. The results show that UP5 achieves better recommendation performance and meanwhile exhibits a high level of fairness.


From Kepler to Newton: Explainable AI for Science Discovery

arXiv.org Artificial Intelligence

The Observation--Hypothesis--Prediction--Experimentation loop paradigm for scientific research has been practiced by researchers for years towards scientific discoveries. However, with data explosion in both mega-scale and milli-scale scientific research, it has been sometimes very difficult to manually analyze the data and propose new hypothesis to drive the cycle for scientific discovery. In this paper, we discuss the role of Explainable AI in scientific discovery process by demonstrating an Explainable AI-based paradigm for science discovery. The key is to use Explainable AI to help derive data or model interpretations as well as scientific discoveries or insights. We show how computational and data-intensive methodology -- together with experimental and theoretical methodology -- can be seamlessly integrated for scientific research. To demonstrate the AI-based science discovery process, and to pay our respect to some of the greatest minds in human history, we show how Kepler's laws of planetary motion and the Newton's law of universal gravitation can be rediscovered by (Explainable) AI based on Tycho Brahe's astronomical observation data, whose works were leading the scientific revolution in the 16-17th century. This work also highlights the important role of Explainable AI (as compared to Blackbox AI) in science discovery to help humans prevent or better prepare for the possible technological singularity that may happen in the future.