Ji, Jiaming
Safe RLHF-V: Safe Reinforcement Learning from Human Feedback in Multimodal Large Language Models
Ji, Jiaming, Chen, Xinyu, Pan, Rui, Zhu, Han, Zhang, Conghui, Li, Jiahao, Hong, Donghai, Chen, Boyuan, Zhou, Jiayi, Wang, Kaile, Dai, Juntao, Chan, Chi-Min, Han, Sirui, Guo, Yike, Yang, Yaodong
Multimodal large language models (MLLMs) are critical for developing general-purpose AI assistants, yet they face growing safety risks. How can we ensure that MLLMs are safely aligned to prevent undesired behaviors such as discrimination, misinformation, or violations of ethical standards? In a further step, we need to explore how to fine-tune MLLMs to enhance reasoning performance while ensuring they satisfy safety constraints. Fundamentally, this can be formulated as a min-max optimization problem. In this study, we propose Safe RLHF-V, the first multimodal safety alignment framework that jointly optimizes helpfulness and safety using separate multimodal reward and cost models within a Lagrangian-based constrained optimization framework. Given that there is a lack of preference datasets that separate helpfulness and safety in multimodal scenarios, we introduce BeaverTails-V, the first open-source dataset with dual preference annotations for helpfulness and safety, along with multi-level safety labels (minor, moderate, severe). Additionally, we design a Multi-level Guardrail System to proactively defend against unsafe queries and adversarial attacks. By applying the Beaver-Guard-V moderation for 5 rounds of filtering and re-generation on the precursor model, the overall safety of the upstream model is significantly improved by an average of 40.9%. Experimental results demonstrate that fine-tuning different MLLMs with Safe RLHF can effectively enhance model helpfulness while ensuring improved safety. Specifically, Safe RLHF-V improves model safety by 34.2% and helpfulness by 34.3%. All of datasets, models, and code can be found at https://github.com/SafeRLHF-V to support the safety development of MLLMs and reduce potential societal risks.
ThinkPatterns-21k: A Systematic Study on the Impact of Thinking Patterns in LLMs
Wen, Pengcheng, Ji, Jiaming, Chan, Chi-Min, Dai, Juntao, Hong, Donghai, Yang, Yaodong, Han, Sirui, Guo, Yike
Large language models (LLMs) have demonstrated enhanced performance through the \textit{Thinking then Responding} paradigm, where models generate internal thoughts before final responses (aka, System 2 thinking). However, existing research lacks a systematic understanding of the mechanisms underlying how thinking patterns affect performance across model sizes. In this work, we conduct a comprehensive analysis of the impact of various thinking types on model performance and introduce ThinkPatterns-21k, a curated dataset comprising 21k instruction-response pairs (QA) collected from existing instruction-following datasets with five thinking types. For each pair, we augment it with five distinct internal thinking patterns: one unstructured thinking (monologue) and four structured variants (decomposition, self-ask, self-debate and self-critic), while maintaining the same instruction and response. Through extensive evaluation across different model sizes (3B-32B parameters), we have two key findings: (1) smaller models (<30B parameters) can benefit from most of structured thinking patterns, while larger models (32B) with structured thinking like decomposition would degrade performance and (2) unstructured monologue demonstrates broad effectiveness across different model sizes. Finally, we released all of our datasets, checkpoints, training logs of diverse thinking patterns to reproducibility, aiming to facilitate further research in this direction.
SafeVLA: Towards Safety Alignment of Vision-Language-Action Model via Safe Reinforcement Learning
Zhang, Borong, Zhang, Yuhao, Ji, Jiaming, Lei, Yingshan, Dai, Josef, Chen, Yuanpei, Yang, Yaodong
Vision-language-action models (VLAs) have shown great potential as generalist robot policies. However, these models pose urgent safety challenges during deployment, including the risk of physical harm to the environment, the robot itself, and humans. How can safety be explicitly incorporated into VLAs? In this work, we propose SafeVLA, a novel algorithm designed to integrate safety into VLAs, ensuring the protection of the environment, robot hardware and humans in real-world settings. SafeVLA effectively balances safety and task performance by employing large-scale constrained learning within simulated environments. We demonstrate that SafeVLA outperforms the current state-of-the-art method in both safety and task performance, achieving average improvements of 83.58% and 3.85%, respectively, in simulation. By prioritizing safety, our approach eliminates high-risk behaviors and reduces the upper bound of unsafe behaviors to 1/35 of that in the current state-of-the-art, thereby significantly mitigating long-tail risks. Furthermore, the learned safety constraints generalize to diverse, unseen scenarios, including multiple out-of-distribution perturbations and tasks. Our data, models and newly proposed benchmark environment are available at https://sites.google.com/view/pku-safevla.
SAE-V: Interpreting Multimodal Models for Enhanced Alignment
Lou, Hantao, Li, Changye, Ji, Jiaming, Yang, Yaodong
With the integration of image modality, the semantic space of multimodal large language models (MLLMs) is more complex than text-only models, making their interpretability more challenging and their alignment less stable, particularly susceptible to low-quality data, which can lead to inconsistencies between modalities, hallucinations, and biased outputs. As a result, developing interpretability methods for MLLMs is crucial for improving alignment quality and efficiency. In text-only LLMs, Sparse Autoencoders (SAEs) have gained attention for their ability to interpret latent representations. However, extending SAEs to multimodal settings presents new challenges due to modality fusion and the difficulty of isolating cross-modal representations. To address these challenges, we introduce SAE-V, a mechanistic interpretability framework that extends the SAE paradigm to MLLMs. By identifying and analyzing interpretable features along with their corresponding data, SAE-V enables fine-grained interpretation of both model behavior and data quality, facilitating a deeper understanding of cross-modal interactions and alignment dynamics. Moreover, by utilizing cross-modal feature weighting, SAE-V provides an intrinsic data filtering mechanism to enhance model alignment without requiring additional models. Specifically, when applied to the alignment process of MLLMs, SAE-V-based data filtering methods could achieve more than 110% performance with less than 50% data. Our results highlight SAE-V's ability to enhance interpretability and alignment in MLLMs, providing insights into their internal mechanisms.
RedStar: Does Scaling Long-CoT Data Unlock Better Slow-Reasoning Systems?
Xu, Haotian, Wu, Xing, Wang, Weinong, Li, Zhongzhi, Zheng, Da, Chen, Boyuan, Hu, Yi, Kang, Shijia, Ji, Jiaming, Zhang, Yingying, Guo, Zhijiang, Yang, Yaodong, Zhang, Muhan, Zhang, Debing
Can scaling transform reasoning? In this work, we explore the untapped potential of scaling Long Chain-of-Thought (Long-CoT) data to 1000k samples, pioneering the development of a slow-thinking model, RedStar. Through extensive experiments with various LLMs and different sizes, we uncover the ingredients for specialization and scale for Long-CoT training. Surprisingly, even smaller models show significant performance gains with limited data, revealing the sample efficiency of Long-CoT and the critical role of sample difficulty in the learning process. Our findings demonstrate that Long-CoT reasoning can be effectively triggered with just a few thousand examples, while larger models achieve unparalleled improvements. We also introduce reinforcement learning (RL)-scale training as a promising direction for advancing slow-thinking systems. RedStar shines across domains: on the MATH-Hard benchmark, RedStar-code-math boosts performance from 66.2\% to 81.6\%, and on the USA Math Olympiad (AIME), it solves 46.7\% of problems using only 21k mixed-code-math datasets. In multimodal tasks like GeoQA and MathVista-GEO, RedStar-Geo achieves competitive results with minimal Long-CoT data, outperforming other slow-thinking systems like QvQ-Preview. Compared to QwQ, RedStar strikes the perfect balance between reasoning and generalizability. Our work highlights that, with careful tuning, scaling Long-CoT can unlock extraordinary reasoning capabilities-even with limited dataset and set a new standard for slow-thinking models across diverse challenges. Our data and models are released at https://huggingface.co/RedStar-Reasoning.
Stream Aligner: Efficient Sentence-Level Alignment via Distribution Induction
Lou, Hantao, Ji, Jiaming, Wang, Kaile, Yang, Yaodong
The rapid advancement of large language models (LLMs) has led to significant improvements in their capabilities, but also to increased concerns about their alignment with human values and intentions. Current alignment strategies, including adaptive training and inference-time methods, have demonstrated potential in this area. However, these approaches still struggle to balance deployment complexity and capability across various tasks and difficulties. In this work, we introduce the Streaming Distribution Induce Aligner (Stream Aligner), a novel alignment paradigm that combines efficiency with enhanced performance in various tasks throughout the generation process. Stream Aligner achieves dynamic sentence-level correction by using a small model to learn the preferences of the suffix sentence, iteratively correcting the suffix sentence output by the upstream model, and then using the corrected sentence to replace the suffix sentence in subsequent generations. Compared to Aligner, our experiments demonstrate that Stream Aligner reduces reliance on the capabilities of additional models, enhances the reasoning abilities of LLMs, and decreases latency during user interaction. Specifically, Stream Aligner-2B model has achieved an improvement of 76.1% in helpfulness, 36.0% in harmlessness on the tested Llama2-70B-chat model, and Stream Aligner-8B has achieved an improvement of 3.5% on the math ability of the tested Llama3-70B-Instruct model.
Align Anything: Training All-Modality Models to Follow Instructions with Language Feedback
Ji, Jiaming, Zhou, Jiayi, Lou, Hantao, Chen, Boyuan, Hong, Donghai, Wang, Xuyao, Chen, Wenqi, Wang, Kaile, Pan, Rui, Li, Jiahao, Wang, Mohan, Dai, Josef, Qiu, Tianyi, Xu, Hua, Li, Dong, Chen, Weipeng, Song, Jun, Zheng, Bo, Yang, Yaodong
Reinforcement learning from human feedback (RLHF) has proven effective in enhancing the instruction-following capabilities of large language models; however, it remains underexplored in the cross-modality domain. As the number of modalities increases, aligning all-modality models with human intentions -- such as instruction following -- becomes a pressing challenge. In this work, we make the first attempt to fine-tune all-modality models (i.e. input and output with any modality, also named any-to-any models) using human preference data across all modalities (including text, image, audio, and video), ensuring its behavior aligns with human intentions. This endeavor presents several challenges. First, there is no large-scale all-modality human preference data in existing open-source resources, as most datasets are limited to specific modalities, predominantly text and image. Secondly, the effectiveness of binary preferences in RLHF for post-training alignment in complex all-modality scenarios remains an unexplored area. Finally, there is a lack of a systematic framework to evaluate the capabilities of all-modality models, particularly regarding modality selection and synergy. To address these challenges, we propose the align-anything framework, which includes meticulously annotated 200k all-modality human preference data. Then, we introduce an alignment method that learns from unified language feedback, effectively capturing complex modality-specific human preferences and enhancing the model's instruction-following capabilities. Furthermore, to assess performance improvements in all-modality models after post-training alignment, we construct a challenging all-modality capability evaluation framework -- eval-anything. All data, models, and code frameworks have been open-sourced for the community. For more details, please refer to https://github.com/PKU-Alignment/align-anything.
ProgressGym: Alignment with a Millennium of Moral Progress
Qiu, Tianyi, Zhang, Yang, Huang, Xuchuan, Li, Jasmine Xinze, Ji, Jiaming, Yang, Yaodong
Frontier AI systems, including large language models (LLMs), hold increasing influence over the epistemology of human users. Such influence can reinforce prevailing societal values, potentially contributing to the lock-in of misguided moral beliefs and, consequently, the perpetuation of problematic moral practices on a broad scale. We introduce progress alignment as a technical solution to mitigate this imminent risk. Progress alignment algorithms learn to emulate the mechanics of human moral progress, thereby addressing the susceptibility of existing alignment methods to contemporary moral blindspots. To empower research in progress alignment, we introduce ProgressGym, an experimental framework allowing the learning of moral progress mechanics from history, in order to facilitate future progress in real-world moral decisions. Leveraging 9 centuries of historical text and 18 historical LLMs, ProgressGym enables codification of real-world progress alignment challenges into concrete benchmarks. Specifically, we introduce three core challenges: tracking evolving values (PG-Follow), preemptively anticipating moral progress (PG-Predict), and regulating the feedback loop between human and AI value shifts (PG-Coevolve). Alignment methods without a temporal dimension are inapplicable to these tasks. In response, we present lifelong and extrapolative algorithms as baseline methods of progress alignment, and build an open leaderboard soliciting novel algorithms and challenges. The framework and the leaderboard are available at https://github.com/PKU-Alignment/ProgressGym and https://huggingface.co/spaces/PKU-Alignment/ProgressGym-LeaderBoard respectively.
Reward Generalization in RLHF: A Topological Perspective
Qiu, Tianyi, Zeng, Fanzhi, Ji, Jiaming, Yan, Dong, Wang, Kaile, Zhou, Jiayi, Han, Yang, Dai, Josef, Pan, Xuehai, Yang, Yaodong
Existing alignment methods share a common topology of information flow, where reward information is collected from humans, modeled with preference learning, and used to tune language models. However, this shared topology has not been systematically characterized, nor have its alternatives been thoroughly explored, leaving the problems of low data efficiency and unreliable generalization unaddressed. As a solution, we introduce a theoretical framework for investigating reward generalization in reinforcement learning from human feedback (RLHF), focusing on the topology of information flow at both macro and micro levels. At the macro level, we portray the RLHF information flow as an autoencoding process over behavior distributions, formalizing the RLHF objective of distributional consistency between human preference and model behavior. At the micro level, we present induced Bayesian networks as a theory of reward generalization in RLHF, introducing fine-grained dataset topologies into generalization bounds. Combining analysis on both levels, we propose reward modeling from tree-structured preference information. It is shown to reduce reward uncertainty by up to $\Theta(\log n/\log\log n)$ times compared to baselines, where $n$ is the dataset size. Validation on three NLP tasks shows that our tree-based reward model achieves an average win rate of 65% against baseline methods, thus improving reward generalization for free via topology design.
Language Models Resist Alignment
Ji, Jiaming, Wang, Kaile, Qiu, Tianyi, Chen, Boyuan, Zhou, Jiayi, Li, Changye, Lou, Hantao, Yang, Yaodong
Large language models (LLMs) may exhibit undesirable behaviors. Recent efforts have focused on aligning these models to prevent harmful generation. Despite these efforts, studies have shown that even a well-conducted alignment process can be easily circumvented, whether intentionally or accidentally. Do alignment fine-tuning have robust effects on models, or are merely superficial? In this work, we answer this question through both theoretical and empirical means. Empirically, we demonstrate the elasticity of post-alignment models, i.e., the tendency to revert to the behavior distribution formed during the pre-training phase upon further fine-tuning. Using compression theory, we formally derive that such fine-tuning process disproportionately undermines alignment compared to pre-training, potentially by orders of magnitude. We conduct experimental validations to confirm the presence of elasticity across models of varying types and sizes. Specifically, we find that model performance declines rapidly before reverting to the pre-training distribution, after which the rate of decline drops significantly. We further reveal that elasticity positively correlates with increased model size and the expansion of pre-training data. Our discovery signifies the importance of taming the inherent elasticity of LLMs, thereby overcoming the resistance of LLMs to alignment finetuning.