Jha, Abhishek
Unsupervised Parameter Efficient Source-free Post-pretraining
Jha, Abhishek, Tuytelaars, Tinne, Asano, Yuki M.
Following the success in NLP, the best vision models are now in the billion parameter ranges. Adapting these large models to a target distribution has become computationally and economically prohibitive. Addressing this challenge, we introduce UpStep, an Unsupervised Parameter-efficient Source-free post-pretraining approach, designed to efficiently adapt a base model from a source domain to a target domain: i) we design a self-supervised training scheme to adapt a pretrained model on an unlabeled target domain in a setting where source domain data is unavailable. Such source-free setting comes with the risk of catastrophic forgetting, hence, ii) we propose center vector regularization (CVR), a set of auxiliary operations that minimize catastrophic forgetting and additionally reduces the computational cost by skipping backpropagation in 50\% of the training iterations. Finally iii) we perform this adaptation process in a parameter-efficient way by adapting the pretrained model through low-rank adaptation methods, resulting in a fraction of parameters to optimize. We utilize various general backbone architectures, both supervised and unsupervised, trained on Imagenet as our base model and adapt them to a diverse set of eight target domains demonstrating the adaptability and generalizability of our proposed approach.
Maximally Separated Active Learning
Kasarla, Tejaswi, Jha, Abhishek, Tervoort, Faye, Cucchiara, Rita, Mettes, Pascal
Active Learning aims to optimize performance while minimizing annotation costs by selecting the most informative samples from an unlabelled pool. Traditional uncertainty sampling often leads to sampling bias by choosing similar uncertain samples. We propose an active learning method that utilizes fixed equiangular hyperspherical points as class prototypes, ensuring consistent inter-class separation and robust feature representations. Our approach introduces Maximally Separated Active Learning (MSAL) for uncertainty sampling and a combined strategy (MSAL-D) for incorporating diversity. This method eliminates the need for costly clustering steps, while maintaining diversity through hyperspherical uniformity. We demonstrate strong performance over existing active learning techniques across five benchmark datasets, highlighting the method's effectiveness and integration ease. The code is available on GitHub.
The Common Stability Mechanism behind most Self-Supervised Learning Approaches
Jha, Abhishek, Blaschko, Matthew B., Asano, Yuki M., Tuytelaars, Tinne
Last couple of years have witnessed a tremendous progress in self-supervised learning (SSL), the success of which can be attributed to the introduction of useful inductive biases in the learning process to learn meaningful visual representations while avoiding collapse. These inductive biases and constraints manifest themselves in the form of different optimization formulations in the SSL techniques, e.g. by utilizing negative examples in a contrastive formulation, or exponential moving average and predictor in BYOL and SimSiam. In this paper, we provide a framework to explain the stability mechanism of these different SSL techniques: i) we discuss the working mechanism of contrastive techniques like SimCLR, non-contrastive techniques like BYOL, SWAV, SimSiam, Barlow Twins, and DINO; ii) we provide an argument that despite different formulations these methods implicitly optimize a similar objective function, i.e. minimizing the magnitude of the expected representation over all data samples, or the mean of the data distribution, while maximizing the magnitude of the expected representation of individual samples over different data augmentations; iii) we provide mathematical and empirical evidence to support our framework. We formulate different hypotheses and test them using the Imagenet100 dataset.
Offline Extraction of Indic Regional Language from Natural Scene Image using Text Segmentation and Deep Convolutional Sequence
Nag, Sauradip, Ganguly, Pallab Kumar, Roy, Sumit, Jha, Sourab, Bose, Krishna, Jha, Abhishek, Dasgupta, Koushik
Regional language extraction from a natural scene image is always a challenging proposition due to its dependence on the text information extracted from Image. Text Extraction on the other hand varies on different lighting condition, arbitrary orientation, inadequate text information, heavy background influence over text and change of text appearance. This paper presents a novel unified method for tackling the above challenges. The proposed work uses an image correction and segmentation technique on the existing Text Detection Pipeline an Efficient and Accurate Scene Text Detector (EAST). EAST uses standard PVAnet architecture to select features and non maximal suppression to detect text from image. Text recognition is done using combined architecture of MaxOut convolution neural network (CNN) and Bidirectional long short term memory (LSTM) network. After recognizing text using the Deep Learning based approach, the native Languages are translated to English and tokenized using standard Text Tokenizers. The tokens that very likely represent a location is used to find the Global Positioning System (GPS) coordinates of the location and subsequently the regional languages spoken in that location is extracted. The proposed method is tested on a self generated dataset collected from Government of India dataset and experimented on Standard Dataset to evaluate the performance of the proposed technique. Comparative study with a few state-of-the-art methods on text detection, recognition and extraction of regional language from images shows that the proposed method outperforms the existing methods.