Goto

Collaborating Authors

 Jennings, Joseph


Training Video Foundation Models with NVIDIA NeMo

arXiv.org Artificial Intelligence

Video Foundation Models (VFMs) have recently been used to simulate the real world to train physical AI systems and develop creative visual experiences. However, there are significant challenges in training large-scale, high quality VFMs that can generate high-quality videos. We present a scalable, open-source VFM training pipeline with NVIDIA NeMo, providing accelerated video dataset curation, multimodal data loading, and parallelized video diffusion model training and inference. We also provide a comprehensive performance analysis highlighting best practices for efficient VFM training and inference.


Enhanced Soups for Graph Neural Networks

arXiv.org Artificial Intelligence

Graph Neural Networks (GNN) have demonstrated state-of-the-art performance in numerous scientific and high-performance computing (HPC) applications. Recent work suggests that "souping" (combining) individually trained GNNs into a single model can improve performance without increasing compute and memory costs during inference. However, existing souping algorithms are often slow and memory-intensive, which limits their scalability. We introduce Learned Souping for GNNs, a gradient-descent-based souping strategy that substantially reduces time and memory overhead compared to existing methods. Our approach is evaluated across multiple Open Graph Benchmark (OGB) datasets and GNN architectures, achieving up to 1.2% accuracy improvement and 2.1X speedup. Additionally, we propose Partition Learned Souping, a novel partition-based variant of learned souping that significantly reduces memory usage. On the ogbn-products dataset with GraphSAGE, partition learned souping achieves a 24.5X speedup and a 76% memory reduction without compromising accuracy.


Nemotron-CC: Transforming Common Crawl into a Refined Long-Horizon Pretraining Dataset

arXiv.org Artificial Intelligence

Recent English Common Crawl datasets like FineWeb-Edu and DCLM achieved significant benchmark gains via aggressive model-based filtering, but at the cost of removing 90% of data. This limits their suitability for long token horizon training, such as 15T tokens for Llama 3.1. In this paper, we show how to achieve better trade-offs between accuracy and data quantity by a combination of classifier ensembling, synthetic data rephrasing, and reduced reliance on heuristic filters. When training 8B parameter models for 1T tokens, using a high-quality subset of our data improves MMLU by 5.6 over DCLM, demonstrating the efficacy of our methods for boosting accuracies over a relatively short token horizon. Furthermore, our full 6.3T token dataset matches DCLM on MMLU, but contains four times more unique real tokens than DCLM. This unlocks state-of-the-art training over a long token horizon: an 8B parameter model trained for 15T tokens, of which 7.2T came from our dataset, is better than the Llama 3.1 8B model: +5 on MMLU, +3.1 on ARC-Challenge, and +0.5 on average across ten diverse tasks. The dataset is available at https://data.commoncrawl.org/contrib/Nemotron/Nemotron-CC/index.html


Data, Data Everywhere: A Guide for Pretraining Dataset Construction

arXiv.org Artificial Intelligence

The impressive capabilities of recent language models can be largely attributed to the multi-trillion token pretraining datasets that they are trained on. However, model developers fail to disclose their construction methodology which has lead to a lack of open information on how to develop effective pretraining sets. To address this issue, we perform the first systematic study across the entire pipeline of pretraining set construction. First, we run ablations on existing techniques for pretraining set development to identify which methods translate to the largest gains in model accuracy on downstream evaluations. Then, we categorize the most widely used data source, web crawl snapshots, across the attributes of toxicity, quality, type of speech, and domain. Finally, we show how such attribute information can be used to further refine and improve the quality of a pretraining set. These findings constitute an actionable set of steps that practitioners can use to develop high quality pretraining sets.


Nemotron-4 340B Technical Report

arXiv.org Artificial Intelligence

We release the Nemotron-4 340B model family, including Nemotron-4-340B-Base, Nemotron-4-340B-Instruct, and Nemotron-4-340B-Reward. Our models are open access under the NVIDIA Open Model License Agreement, a permissive model license that allows distribution, modification, and use of the models and its outputs. These models perform competitively to open access models on a wide range of evaluation benchmarks, and were sized to fit on a single DGX H100 with 8 GPUs when deployed in FP8 precision. We believe that the community can benefit from these models in various research studies and commercial applications, especially for generating synthetic data to train smaller language models. Notably, over 98% of data used in our model alignment process is synthetically generated, showcasing the effectiveness of these models in generating synthetic data. To further support open research and facilitate model development, we are also open-sourcing the synthetic data generation pipeline used in our model alignment process.


Nemotron-4 15B Technical Report

arXiv.org Artificial Intelligence

For example, (Hoffmann et al., 2022) shows that given two roughly IsoFLOP GPT models with a similar data distribution, a 65-billion-parameter model on 1.4 trillion tokens and a 280-billion-parameter model on 300 billion tokens, the 65B model has better accuracy on downstream tasks. This trade-off of allocating compute towards training on more data as opposed to increasing model size is particularly appealing from an inference perspective, reducing latency and the amount of compute needed to serve models. As a consequence, a major focus of language modeling training efforts has shifted to collecting high-quality multi-trillion token datasets from public sources such as Common Crawl.