Goto

Collaborating Authors

 Jecmen, Steven


On the Detection of Reviewer-Author Collusion Rings From Paper Bidding

arXiv.org Artificial Intelligence

A major threat to the peer-review systems of computer science conferences is the existence of "collusion rings" between reviewers. In such collusion rings, reviewers who have also submitted their own papers to the conference work together to manipulate the conference's paper assignment, with the aim of being assigned to review each other's papers. The most straightforward way that colluding reviewers can manipulate the paper assignment is by indicating their interest in each other's papers through strategic paper bidding. One potential approach to solve this important problem would be to detect the colluding reviewers from their manipulated bids, after which the conference can take appropriate action. While prior work has has developed effective techniques to detect other kinds of fraud, no research has yet established that detecting collusion rings is even possible. In this work, we tackle the question of whether it is feasible to detect collusion rings from the paper bidding. To answer this question, we conduct empirical analysis of two realistic conference bidding datasets, including evaluations of existing algorithms for fraud detection in other applications. We find that collusion rings can achieve considerable success at manipulating the paper assignment while remaining hidden from detection: for example, in one dataset, undetected colluders are able to achieve assignment to up to 30% of the papers authored by other colluders. In addition, when 10 colluders bid on all of each other's papers, no detection algorithm outputs a group of reviewers with more than 31% overlap with the true colluders. These results suggest that collusion cannot be effectively detected from the bidding, demonstrating the need to develop more complex detection algorithms that leverage additional metadata.


A Dataset on Malicious Paper Bidding in Peer Review

arXiv.org Artificial Intelligence

In conference peer review, reviewers are often asked to provide "bids" on each submitted paper that express their interest in reviewing that paper. A paper assignment algorithm then uses these bids (along with other data) to compute a high-quality assignment of reviewers to papers. However, this process has been exploited by malicious reviewers who strategically bid in order to unethically manipulate the paper assignment, crucially undermining the peer review process. For example, these reviewers may aim to get assigned to a friend's paper as part of a quid-pro-quo deal. A critical impediment towards creating and evaluating methods to mitigate this issue is the lack of any publicly-available data on malicious paper bidding. In this work, we collect and publicly release a novel dataset to fill this gap, collected from a mock conference activity where participants were instructed to bid either honestly or maliciously. We further provide a descriptive analysis of the bidding behavior, including our categorization of different strategies employed by participants. Finally, we evaluate the ability of each strategy to manipulate the assignment, and also evaluate the performance of some simple algorithms meant to detect malicious bidding. The performance of these detection algorithms can be taken as a baseline for future research on detecting malicious bidding.


Tradeoffs in Preventing Manipulation in Paper Bidding for Reviewer Assignment

arXiv.org Artificial Intelligence

Many conferences rely on paper bidding as a key component of their reviewer assignment procedure. These bids are then taken into account when assigning reviewers to help ensure that each reviewer is assigned to suitable papers. However, despite the benefits of using bids, reliance on paper bidding can allow malicious reviewers to manipulate the paper assignment for unethical purposes (e.g., getting assigned to a friend's paper). Several different approaches to preventing this manipulation have been proposed and deployed. In this paper, we enumerate certain desirable properties that algorithms for addressing bid manipulation should satisfy. We then offer a high-level analysis of various approaches along with directions for future investigation.


Near-Optimal Reviewer Splitting in Two-Phase Paper Reviewing and Conference Experiment Design

arXiv.org Artificial Intelligence

Many scientific conferences employ a two-phase paper review process, where some papers are assigned additional reviewers after the initial reviews are submitted. Many conferences also design and run experiments on their paper review process, where some papers are assigned reviewers who provide reviews under an experimental condition. In this paper, we consider the question: how should reviewers be divided between phases or conditions in order to maximize total assignment similarity? We make several contributions towards answering this question. First, we prove that when the set of papers requiring additional review is unknown, a simplified variant of this problem is NP-hard. Second, we empirically show that across several datasets pertaining to real conference data, dividing reviewers between phases/conditions uniformly at random allows an assignment that is nearly as good as the oracle optimal assignment. This uniformly random choice is practical for both the two-phase and conference experiment design settings. Third, we provide explanations of this phenomenon by providing theoretical bounds on the suboptimality of this random strategy under certain natural conditions. From these easily-interpretable conditions, we provide actionable insights to conference program chairs about whether a random reviewer split is suitable for their conference.


Mitigating Manipulation in Peer Review via Randomized Reviewer Assignments

arXiv.org Artificial Intelligence

We consider three important challenges in conference peer review: (i) reviewers maliciously attempting to get assigned to certain papers to provide positive reviews, possibly as part of quid-pro-quo arrangements with the authors; (ii) "torpedo reviewing," where reviewers deliberately attempt to get assigned to certain papers that they dislike in order to reject them; (iii) reviewer de-anonymization on release of the similarities and the reviewer-assignment code. On the conceptual front, we identify connections between these three problems and present a framework that brings all these challenges under a common umbrella. We then present a (randomized) algorithm for reviewer assignment that can optimally solve the reviewer-assignment problem under any given constraints on the probability of assignment for any reviewer-paper pair. We further consider the problem of restricting the joint probability that certain suspect pairs of reviewers are assigned to certain papers, and show that this problem is NP-hard for arbitrary constraints on these joint probabilities but efficiently solvable for a practical special case. Finally, we experimentally evaluate our algorithms on datasets from past conferences, where we observe that they can limit the chance that any malicious reviewer gets assigned to their desired paper to 50% while producing assignments with over 90% of the total optimal similarity. Our algorithms still achieve this similarity while also preventing reviewers with close associations from being assigned to the same paper.