Plotting

 Jebara, Tony


On Reversing Jensen's Inequality

Neural Information Processing Systems

Jensen's inequality is a powerful mathematical tool and one of the workhorses in statistical learning. Its applications therein include the EM algorithm, Bayesian estimation and Bayesian inference. Jensen computes simplelower bounds on otherwise intractable quantities such as products of sums and latent log-likelihoods. This simplification then permits operationslike integration and maximization. Quite often (i.e. in discriminative learning) upper bounds are needed as well. We derive and prove an efficient analytic inequality that provides such variational upper bounds. This inequality holds for latent variable mixtures of exponential family distributions and thus spans a wide range of contemporary statistical models.We also discuss applications of the upper bounds including maximum conditional likelihood, large margin discriminative models and conditional Bayesian inference. Convergence, efficiency and prediction results are shown.


Maximum Entropy Discrimination

Neural Information Processing Systems

We present a general framework for discriminative estimation based on the maximum entropy principle and its extensions. All calculations involvedistributions over structures and/or parameters rather than specific settings and reduce to relative entropy projections. This holds even when the data is not separable within the chosen parametric class, in the context of anomaly detection rather than classification, or when the labels in the training set are uncertain or incomplete. Support vector machines are naturally subsumed under thisclass and we provide several extensions. We are also able to estimate exactly and efficiently discriminative distributions over tree structures of class-conditional models within this framework.


Maximum Entropy Discrimination

Neural Information Processing Systems

We present a general framework for discriminative estimation based on the maximum entropy principle and its extensions. All calculations involve distributions over structures and/or parameters rather than specific settings and reduce to relative entropy projections. This holds even when the data is not separable within the chosen parametric class, in the context of anomaly detection rather than classification, or when the labels in the training set are uncertain or incomplete. Support vector machines are naturally subsumed under this class and we provide several extensions. We are also able to estimate exactly and efficiently discriminative distributions over tree structures of class-conditional models within this framework.


Maximum Conditional Likelihood via Bound Maximization and the CEM Algorithm

Neural Information Processing Systems

Advantages in feature selection, robustness andlimited resource allocation have been studied. Ultimately, tasks such as regression and classification reduce to the evaluation of a conditional density. However, popularity of maximumjoint likelihood and EM techniques remains strong in part due to their elegance and convergence properties. Thus, many conditional problems are solved by first estimating joint models then conditioning them.


Bayesian Modeling of Facial Similarity

Neural Information Processing Systems

In previous work [6, 9, 10], we advanced a new technique for direct visual matching of images for the purposes of face recognition and image retrieval, using a probabilistic measure of similarity based primarily on a Bayesian (MAP) analysis of image differences, leadingto a "dual" basis similar to eigenfaces [13]. The performance advantage of this probabilistic matching technique over standard Euclidean nearest-neighbor eigenface matching was recently demonstrated using results from DARPA's 1996 "FERET" face recognition competition, in which this probabilistic matching algorithm was found to be the top performer. We have further developed a simple method of replacing the costly compution of nonlinear (online) Bayesian similarity measures by the relatively inexpensive computation of linear (offline) subspace projections and simple (online) Euclidean norms, thus resulting in a significant computational speedup for implementation with very large image databases as typically encountered in real-world applications.


Maximum Conditional Likelihood via Bound Maximization and the CEM Algorithm

Neural Information Processing Systems

We present the CEM (Conditional Expectation Maximi::ation) algorithm as an extension of the EM (Expectation M aximi::ation) algorithm to conditional density estimation under missing data. A bounding and maximization process is given to specifically optimize conditional likelihood instead of the usual joint likelihood. We apply the method to conditioned mixture models and use bounding techniques to derive the model's update rules. Monotonic convergence, computational efficiency and regression results superior to EM are demonstrated.


Bayesian Modeling of Facial Similarity

Neural Information Processing Systems

In previous work [6, 9, 10], we advanced a new technique for direct visual matching of images for the purposes of face recognition and image retrieval, using a probabilistic measure of similarity based primarily on a Bayesian (MAP) analysis of image differences, leading to a "dual" basis similar to eigenfaces [13]. The performance advantage of this probabilistic matching technique over standard Euclidean nearest-neighbor eigenface matching was recently demonstrated using results from DARPA's 1996 "FERET" face recognition competition, in which this probabilistic matching algorithm was found to be the top performer. We have further developed a simple method of replacing the costly com put ion of nonlinear (online) Bayesian similarity measures by the relatively inexpensive computation of linear (offline) subspace projections and simple (online) Euclidean norms, thus resulting in a significant computational speedup for implementation with very large image databases as typically encountered in real-world applications.