Jean, Sebastien
Measuring and Mitigating Constraint Violations of In-Context Learning for Utterance-to-API Semantic Parsing
Wang, Shufan, Jean, Sebastien, Sengupta, Sailik, Gung, James, Pappas, Nikolaos, Zhang, Yi
In executable task-oriented semantic parsing, the system aims to translate users' utterances in natural language to machine-interpretable programs (API calls) that can be executed according to pre-defined API specifications. With the popularity of Large Language Models (LLMs), in-context learning offers a strong baseline for such scenarios, especially in data-limited regimes. However, LLMs are known to hallucinate and therefore pose a formidable challenge in constraining generated content. Thus, it remains uncertain if LLMs can effectively perform task-oriented utterance-to-API generation where respecting API's structural and task-specific constraints is crucial. In this work, we seek to measure, analyze and mitigate such constraints violations. First, we identify the categories of various constraints in obtaining API-semantics from task-oriented utterances, and define fine-grained metrics that complement traditional ones. Second, we leverage these metrics to conduct a detailed error analysis of constraints violations seen in state-of-the-art LLMs, which motivates us to investigate two mitigation strategies: Semantic-Retrieval of Demonstrations (SRD) and API-aware Constrained Decoding (API-CD). Our experiments show that these strategies are effective at reducing constraints violations and improving the quality of the generated API calls, but require careful consideration given their implementation complexity and latency.
Does Neural Machine Translation Benefit from Larger Context?
Jean, Sebastien, Lauly, Stanislas, Firat, Orhan, Cho, Kyunghyun
We propose a neural machine translation architecture that models the surrounding text in addition to the source sentence. These models lead to better performance, both in terms of general translation quality and pronoun prediction, when trained on small corpora, although this improvement largely disappears when trained with a larger corpus. We also discover that attention-based neural machine translation is well suited for pronoun prediction and compares favorably with other approaches that were specifically designed for this task.