Jayarao, Pratik
Shopping MMLU: A Massive Multi-Task Online Shopping Benchmark for Large Language Models
Jin, Yilun, Li, Zheng, Zhang, Chenwei, Cao, Tianyu, Gao, Yifan, Jayarao, Pratik, Li, Mao, Liu, Xin, Sarkhel, Ritesh, Tang, Xianfeng, Wang, Haodong, Wang, Zhengyang, Xu, Wenju, Yang, Jingfeng, Yin, Qingyu, Li, Xian, Nigam, Priyanka, Xu, Yi, Chen, Kai, Yang, Qiang, Jiang, Meng, Yin, Bing
Online shopping is a complex multi-task, few-shot learning problem with a wide and evolving range of entities, relations, and tasks. However, existing models and benchmarks are commonly tailored to specific tasks, falling short of capturing the full complexity of online shopping. Large Language Models (LLMs), with their multi-task and few-shot learning abilities, have the potential to profoundly transform online shopping by alleviating task-specific engineering efforts and by providing users with interactive conversations. Despite the potential, LLMs face unique challenges in online shopping, such as domain-specific concepts, implicit knowledge, and heterogeneous user behaviors. Motivated by the potential and challenges, we propose Shopping MMLU, a diverse multi-task online shopping benchmark derived from real-world Amazon data. Shopping MMLU consists of 57 tasks covering 4 major shopping skills: concept understanding, knowledge reasoning, user behavior alignment, and multi-linguality, and can thus comprehensively evaluate the abilities of LLMs as general shop assistants. With Shopping MMLU, we benchmark over 20 existing LLMs and uncover valuable insights about practices and prospects of building versatile LLM-based shop assistants. Shopping MMLU can be publicly accessed at https://github.com/KL4805/ShoppingMMLU. In addition, with Shopping MMLU, we host a competition in KDD Cup 2024 with over 500 participating teams. The winning solutions and the associated workshop can be accessed at our website https://amazon-kddcup24.github.io/.
Retraining DistilBERT for a Voice Shopping Assistant by Using Universal Dependencies
Jayarao, Pratik, Sharma, Arpit
In this work, we retrained the distilled BERT language model for Walmart's voice shopping assistant on retail domain-specific data. We also injected universal syntactic dependencies to improve the performance of the model further. The Natural Language Understanding (NLU) components of the voice assistants available today are heavily dependent on language models for various tasks. The generic language models such as BERT and RoBERTa are useful for domain-independent assistants but have limitations when they cater to a specific domain. For example, in the shopping domain, the token 'horizon' means a brand instead of its literal meaning. Generic models are not able to capture such subtleties. So, in this work, we retrained a distilled version of the BERT language model on retail domain-specific data for Walmart's voice shopping assistant. We also included universal dependency-based features in the retraining process further to improve the performance of the model on downstream tasks. We evaluated the performance of the retrained language model on four downstream tasks, including intent-entity detection, sentiment analysis, voice title shortening and proactive intent suggestion. We observed an increase in the performance of all the downstream tasks of up to 1.31% on average.