Jayadeva, null
No prejudice! Fair Federated Graph Neural Networks for Personalized Recommendation
Agrawal, Nimesh, Sirohi, Anuj Kumar, Jayadeva, null, Kumar, Sandeep
Ensuring fairness in Recommendation Systems (RSs) across demographic groups is critical due to the increased integration of RSs in applications such as personalized healthcare, finance, and e-commerce. Graph-based RSs play a crucial role in capturing intricate higher-order interactions among entities. However, integrating these graph models into the Federated Learning (FL) paradigm with fairness constraints poses formidable challenges as this requires access to the entire interaction graph and sensitive user information (such as gender, age, etc.) at the central server. This paper addresses the pervasive issue of inherent bias within RSs for different demographic groups without compromising the privacy of sensitive user attributes in FL environment with the graph-based model. To address the group bias, we propose F2PGNN (Fair Federated Personalized Graph Neural Network), a novel framework that leverages the power of Personalized Graph Neural Network (GNN) coupled with fairness considerations. Additionally, we use differential privacy techniques to fortify privacy protection. Experimental evaluation on three publicly available datasets showcases the efficacy of F2PGNN in mitigating group unfairness by 47% - 99% compared to the state-of-the-art while preserving privacy and maintaining the utility. The results validate the significance of our framework in achieving equitable and personalized recommendations using GNN within the FL landscape.
MaScQA: A Question Answering Dataset for Investigating Materials Science Knowledge of Large Language Models
Zaki, Mohd, Jayadeva, null, Mausam, null, Krishnan, N. M. Anoop
Department of Computer Science & Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India Abstract Information extraction and textual comprehension from materials literature are vital for developing an exhaustive knowledge base that enables accelerated materials discovery. Language models have demonstrated their capability to answer domain-specific questions and retrieve information from knowledge bases. However, there are no benchmark datasets in the materials domain that can evaluate the understanding of the key concepts by these language models. In this work, we curate a dataset of 650 challenging questions from the materials domain that require the knowledge and skills of a materials student who has cleared their undergraduate degree. We classify these questions based on their structure and the materials science domain-based subcategories. Further, we evaluate the performance of GPT-3.5 and GPT-4 models on solving these questions via zero-shot and chain of thought prompting. It is observed that GPT-4 gives the best performance (~62% accuracy) as compared to GPT-3.5. Interestingly, in contrast to the general observation, no significant improvement in accuracy is observed with the chain of thought prompting. To evaluate the limitations, we performed an error analysis, which revealed conceptual errors (~64%) as the major contributor compared to computational errors (~36%) towards the reduced performance of LLMs. We hope that the dataset and analysis performed in this work will promote further research in developing better materials science domain-specific LLMs and strategies for information extraction.
HybMT: Hybrid Meta-Predictor based ML Algorithm for Fast Test Vector Generation
Pandey, Shruti, Jayadeva, null, Sarangi, Smruti R.
ML models are increasingly being used to increase the test coverage and decrease the overall testing time. This field is still in its nascent stage and up till now there were no algorithms that could match or outperform commercial tools in terms of speed and accuracy for large circuits. We propose an ATPG algorithm HybMT in this paper that finally breaks this barrier. Like sister methods, we augment the classical PODEM algorithm that uses recursive backtracking. We design a custom 2-level predictor that predicts the input net of a logic gate whose value needs to be set to ensure that the output is a given value (0 or 1). Our predictor chooses the output from among two first-level predictors, where the most effective one is a bespoke neural network and the other is an SVM regressor. As compared to a popular, state-of-the-art commercial ATPG tool, HybMT shows an overall reduction of 56.6% in the CPU time without compromising on the fault coverage for the EPFL benchmark circuits. HybMT also shows a speedup of 126.4% over the best ML-based algorithm while obtaining an equal or better fault coverage for the EPFL benchmark circuits.
Discovering Symbolic Laws Directly from Trajectories with Hamiltonian Graph Neural Networks
Bishnoi, Suresh, Bhattoo, Ravinder, Jayadeva, null, Ranu, Sayan, Krishnan, N M Anoop
The time evolution of physical systems is described by differential equations, which depend on abstract quantities like energy and force. Traditionally, these quantities are derived as functionals based on observables such as positions and velocities. Discovering these governing symbolic laws is the key to comprehending the interactions in nature. Here, we present a Hamiltonian graph neural network (HGNN), a physics-enforced GNN that learns the dynamics of systems directly from their trajectory. We demonstrate the performance of HGNN on n-springs, n-pendulums, gravitational systems, and binary Lennard Jones systems; HGNN learns the dynamics in excellent agreement with the ground truth from small amounts of data. We also evaluate the ability of HGNN to generalize to larger system sizes, and to hybrid spring-pendulum system that is a combination of two original systems (spring and pendulum) on which the models are trained independently. Finally, employing symbolic regression on the learned HGNN, we infer the underlying equations relating the energy functionals, even for complex systems such as the binary Lennard-Jones liquid. Our framework facilitates the interpretable discovery of interaction laws directly from physical system trajectories. Furthermore, this approach can be extended to other systems with topology-dependent dynamics, such as cells, polydisperse gels, or deformable bodies.
Graph Neural Stochastic Differential Equations for Learning Brownian Dynamics
Bishnoi, Suresh, Jayadeva, null, Ranu, Sayan, Krishnan, N. M. Anoop
Neural networks (NNs) that exploit strong inductive biases based on physical laws and symmetries have shown remarkable success in learning the dynamics of physical systems directly from their trajectory. However, these works focus only on the systems that follow deterministic dynamics, for instance, Newtonian or Hamiltonian dynamics. Here, we propose a framework, namely Brownian graph neural networks (BROGNET), combining stochastic differential equations (SDEs) and GNNs to learn Brownian dynamics directly from the trajectory. We theoretically show that BROGNET conserves the linear momentum of the system, which in turn, provides superior performance on learning dynamics as revealed empirically. We demonstrate this approach on several systems, namely, linear spring, linear spring with binary particle types, and non-linear spring systems, all following Brownian dynamics at finite temperatures. We show that BROGNET significantly outperforms proposed baselines across all the benchmarked Brownian systems. In addition, we demonstrate zero-shot generalizability of BROGNET to simulate unseen system sizes that are two orders of magnitude larger and to different temperatures than those used during training. Altogether, our study contributes to advancing the understanding of the intricate dynamics of Brownian motion and demonstrates the effectiveness of graph neural networks in modeling such complex systems.
Predicting Oxide Glass Properties with Low Complexity Neural Network and Physical and Chemical Descriptors
Bishnoi, Suresh, Badge, Skyler, Jayadeva, null, Krishnan, N. M. Anoop
Due to their disordered structure, glasses present a unique challenge in predicting the composition-property relationships. Recently, several attempts have been made to predict the glass properties using machine learning techniques. However, these techniques have the limitations, namely, (i) predictions are limited to the components that are present in the original dataset, and (ii) predictions towards the extreme values of the properties, important regions for new materials discovery, are not very reliable due to the sparse datapoints in this region. To address these challenges, here we present a low complexity neural network (LCNN) that provides improved performance in predicting the properties of oxide glasses. In addition, we combine the LCNN with physical and chemical descriptors that allow the development of universal models that can provide predictions for components beyond the training set. By training on a large dataset (~50000) of glass components, we show the LCNN outperforms state-of-the-art algorithms such as XGBoost. In addition, we interpret the LCNN models using Shapely additive explanations to gain insights into the role played by the descriptors in governing the property. Finally, we demonstrate the universality of the LCNN models by predicting the properties for glasses with new components that were not present in the original training set. Altogether, the present approach provides a promising direction towards accelerated discovery of novel glass compositions.
Enhash: A Fast Streaming Algorithm For Concept Drift Detection
Jindal, Aashi, Gupta, Prashant, Sengupta, Debarka, Jayadeva, null
We propose Enhash, a fast ensemble learner that detects \textit{concept drift} in a data stream. A stream may consist of abrupt, gradual, virtual, or recurring events, or a mixture of various types of drift. Enhash employs projection hash to insert an incoming sample. We show empirically that the proposed method has competitive performance to existing ensemble learners in much lesser time. Also, Enhash has moderate resource requirements. Experiments relevant to performance comparison were performed on 6 artificial and 4 real data sets consisting of various types of drifts.
Guided Random Forest and its application to data approximation
Gupta, Prashant, Jindal, Aashi, Jayadeva, null, Sengupta, Debarka
We present a new way of constructing an ensemble classifier, named the Guided Random Forest (GRAF) in the sequel. GRAF extends the idea of building oblique decision trees with localized partitioning to obtain a global partitioning. We show that global partitioning bridges the gap between decision trees and boosting algorithms. We empirically demonstrate that global partitioning reduces the generalization error bound. Results on 115 benchmark datasets show that GRAF yields comparable or better results on a majority of datasets. We also present a new way of approximating the datasets in the framework of random forests.
Smaller Models, Better Generalization
Sharma, Mayank, Tripathi, Suraj, Dubey, Abhimanyu, Jayadeva, null, Guruju, Sai, Goalla, Nihal
Reducing network complexity has been a major research focus in recent years with the advent of mobile technology. Convolutional Neural Networks that perform various vision tasks without memory overhaul is the need of the hour. This paper focuses on qualitative and quantitative analysis of reducing the network complexity using an upper bound on the Vapnik-Chervonenkis dimension, pruning, and quantization. We observe a general trend in improvement of accuracies as we quantize the models. We propose a novel loss function that helps in achieving considerable sparsity at comparable accuracies to that of dense models. We compare various regularizations prevalent in the literature and show the superiority of our method in achieving sparser models that generalize well.
Effect of Various Regularizers on Model Complexities of Neural Networks in Presence of Input Noise
Sharma, Mayank, Yadav, Aayush, Soman, Sumit, Jayadeva, null
Deep neural networks are over-parameterized, which implies that the number of parameters are much larger than the number of samples used to train the network. Even in such a regime deep architectures do not overfit. This phenomenon is an active area of research and many theories have been proposed trying to understand this peculiar observation. These include the Vapnik Chervonenkis (VC) dimension bounds and Rademacher complexity bounds which show that the capacity of the network is characterized by the norm of weights rather than the number of parameters. However, the effect of input noise on these measures for shallow and deep architectures has not been studied. In this paper, we analyze the effects of various regularization schemes on the complexity of a neural network which we characterize with the loss, $L_2$ norm of the weights, Rademacher complexities (Directly Approximately Regularizing Complexity-DARC1), VC dimension based Low Complexity Neural Network (LCNN) when subject to varying degrees of Gaussian input noise. We show that $L_2$ regularization leads to a simpler hypothesis class and better generalization followed by DARC1 regularizer, both for shallow as well as deeper architectures. Jacobian regularizer works well for shallow architectures with high level of input noises. Spectral normalization attains highest test set accuracies both for shallow and deeper architectures. We also show that Dropout alone does not perform well in presence of input noise. Finally, we show that deeper architectures are robust to input noise as opposed to their shallow counterparts.