Goto

Collaborating Authors

 Javed, Mohammed


ETLNet: An Efficient TCN-BiLSTM Network for Road Anomaly Detection Using Smartphone Sensors

arXiv.org Artificial Intelligence

Road anomalies can be defined as irregularities on the road surface or in the surface itself. Some may be intentional (such as speedbumps), accidental (such as materials falling off a truck), or the result of roads' excessive use or low or no maintenance, such as potholes. Despite their varying origins, these irregularities often harm vehicles substantially. Speed bumps are intentionally placed for safety but are dangerous due to their non-standard shape, size, and lack of proper markings. Potholes are unintentional and can also cause severe damage. To address the detection of these anomalies, we need an automated road monitoring system. Today, various systems exist that use visual information to track these anomalies. Still, due to poor lighting conditions and improper or missing markings, they may go undetected and have severe consequences for public transport, automated vehicles, etc. In this paper, the Enhanced Temporal-BiLSTM Network (ETLNet) is introduced as a novel approach that integrates two Temporal Convolutional Network (TCN) layers with a Bidirectional Long Short-Term Memory (BiLSTM) layer. This combination is tailored to detect anomalies effectively irrespective of lighting conditions, as it depends not on visuals but smartphone inertial sensor data. Our methodology employs accelerometer and gyroscope sensors, typically in smartphones, to gather data on road conditions. Empirical evaluations demonstrate that the ETLNet model maintains an F1-score for detecting speed bumps of 99.3%. The ETLNet model's robustness and efficiency significantly advance automated road surface monitoring technologies.


Leaf-Based Plant Disease Detection and Explainable AI

arXiv.org Artificial Intelligence

The agricultural sector plays an essential role in the economic growth of a country. Specifically, in an Indian context, it is the critical source of livelihood for millions of people living in rural areas. Plant Disease is one of the significant factors affecting the agricultural sector. Plants get infected with diseases for various reasons, including synthetic fertilizers, archaic practices, environmental conditions, etc., which impact the farm yield and subsequently hinder the economy. To address this issue, researchers have explored many applications based on AI and Machine Learning techniques to detect plant diseases. This research survey provides a comprehensive understanding of common plant leaf diseases, evaluates traditional and deep learning techniques for disease detection, and summarizes available datasets. It also explores Explainable AI (XAI) to enhance the interpretability of deep learning models' decisions for end-users. By consolidating this knowledge, the survey offers valuable insights to researchers, practitioners, and stakeholders in the agricultural sector, fostering the development of efficient and transparent solutions for combating plant diseases and promoting sustainable agricultural practices.


CompTLL-UNet: Compressed Domain Text-Line Localization in Challenging Handwritten Documents using Deep Feature Learning from JPEG Coefficients

arXiv.org Artificial Intelligence

Automatic localization of text-lines in handwritten documents is still an open and challenging research problem. Various writing issues such as uneven spacing between the lines, oscillating and touching text, and the presence of skew become much more challenging when the case of complex handwritten document images are considered for segmentation directly in their respective compressed representation. This is because, the conventional way of processing compressed documents is through decompression, but here in this paper, we propose an idea that employs deep feature learning directly from the JPEG compressed coefficients without full decompression to accomplish text-line localization in the JPEG compressed domain. A modified U-Net architecture known as Compressed Text-Line Localization Network (CompTLL-UNet) is designed to accomplish it. The model is trained and tested with JPEG compressed version of benchmark datasets including ICDAR2017 (cBAD) and ICDAR2019 (cBAD), reporting the state-of-the-art performance with reduced storage and computational costs in the JPEG compressed domain.


DWT-CompCNN: Deep Image Classification Network for High Throughput JPEG 2000 Compressed Documents

arXiv.org Artificial Intelligence

For any digital application with document images such as retrieval, the classification of document images becomes an essential stage. Conventionally for the purpose, the full versions of the documents, that is the uncompressed document images make the input dataset, which poses a threat due to the big volume required to accommodate the full versions of the documents. Therefore, it would be novel, if the same classification task could be accomplished directly (with some partial decompression) with the compressed representation of documents in order to make the whole process computationally more efficient. In this research work, a novel deep learning model, DWT CompCNN is proposed for classification of documents that are compressed using High Throughput JPEG 2000 (HTJ2K) algorithm. The proposed DWT-CompCNN comprises of five convolutional layers with filter sizes of 16, 32, 64, 128, and 256 consecutively for each increasing layer to improve learning from the wavelet coefficients extracted from the compressed images. Experiments are performed on two benchmark datasets- Tobacco-3482 and RVL-CDIP, which demonstrate that the proposed model is time and space efficient, and also achieves a better classification accuracy in compressed domain.


A Survey on Change Detection Techniques in Document Images

arXiv.org Artificial Intelligence

The problem of change detection in images finds application in different domains like diagnosis of diseases in the medical field, detecting growth patterns of cities through remote sensing, and finding changes in legal documents and contracts. However, this paper presents a survey on core techniques and rules to detect changes in different versions of a document image. Our discussions on change detection focus on two categories -- content-based and layout-based. The content-based techniques intelligently extract and analyze the image contents (text or non-text) to show the possible differences, whereas the layout-based techniques use structural information to predict document changes. We also summarize the existing datasets and evaluation metrics used in change detection experiments. The shortcomings and challenges the existing methods face are reported, along with some pointers for future research work.


A Survey on Figure Classification Techniques in Scientific Documents

arXiv.org Artificial Intelligence

Figures visually represent an essential piece of information and provide an effective means to communicate scientific facts. Recently there have been many efforts toward extracting data directly from figures, specifically from tables, diagrams, and plots, using different Artificial Intelligence and Machine Learning techniques. This is because removing information from figures could lead to deeper insights into the concepts highlighted in the scientific documents. In this survey paper, we systematically categorize figures into five classes - tables, photos, diagrams, maps, and plots, and subsequently present a critical review of the existing methodologies and data sets that address the problem of figure classification. Finally, we identify the current research gaps and provide possible directions for further research on figure classification.


A Survey and Approach to Chart Classification

arXiv.org Artificial Intelligence

Charts represent an essential source of visual information in documents and facilitate a deep understanding and interpretation of information typically conveyed numerically. In the scientific literature, there are many charts, each with its stylistic differences. Recently the document understanding community has begun to address the problem of automatic chart understanding, which begins with chart classification. In this paper, we present a survey of the current state-of-the-art techniques for chart classification and discuss the available datasets and their supported chart types. We broadly classify these contributions as traditional approaches based on ML, CNN, and Transformers. Furthermore, we carry out an extensive comparative performance analysis of CNN-based and transformer-based approaches on the recently published CHARTINFO UB-UNITECH PMC dataset for the CHART-Infographics competition at ICPR 2022. The data set includes 15 different chart categories, including 22,923 training images and 13,260 test images. We have implemented a vision-based transformer model that produces state-of-the-art results in chart classification.