Goto

Collaborating Authors

 Javaheripi, Mojan


Phi-4 Technical Report

arXiv.org Artificial Intelligence

We present phi-4, a 14-billion parameter language model developed with a training recipe that is centrally focused on data quality. Unlike most language models, where pre-training is based primarily on organic data sources such as web content or code, phi-4 strategically incorporates synthetic data throughout the training process. While previous models in the Phi family largely distill the capabilities of a teacher model (specifically GPT-4), phi-4 substantially surpasses its teacher model on STEM-focused QA capabilities, giving evidence that our data-generation and post-training techniques go beyond distillation. Despite minimal changes to the phi-3 architecture, phi-4 achieves strong performance relative to its size -- especially on reasoning-focused benchmarks -- due to improved data, training curriculum, and innovations in the post-training scheme.


Phi-3 Technical Report: A Highly Capable Language Model Locally on Your Phone

arXiv.org Artificial Intelligence

We introduce phi-3-mini, a 3.8 billion parameter language model trained on 3.3 trillion tokens, whose overall performance, as measured by both academic benchmarks and internal testing, rivals that of models such as Mixtral 8x7B and GPT-3.5 (e.g., phi-3-mini achieves 69% on MMLU and 8.38 on MT-bench), despite being small enough to be deployed on a phone. The innovation lies entirely in our dataset for training, a scaled-up version of the one used for phi-2, composed of heavily filtered publicly available web data and synthetic data. The model is also further aligned for robustness, safety, and chat format. We also provide some initial parameter-scaling results with a 7B and 14B models trained for 4.8T tokens, called phi-3-small and phi-3-medium, both significantly more capable than phi-3-mini (e.g., respectively 75% and 78% on MMLU, and 8.7 and 8.9 on MT-bench). Moreover, we also introduce phi-3-vision, a 4.2 billion parameter model based on phi-3-mini with strong reasoning capabilities for image and text prompts.


Textbooks Are All You Need

arXiv.org Artificial Intelligence

We introduce phi-1, a new large language model for code, with significantly smaller size than competing models: phi-1 is a Transformer-based model with 1.3B parameters, trained for 4 days on 8 A100s, using a selection of ``textbook quality" data from the web (6B tokens) and synthetically generated textbooks and exercises with GPT-3.5 (1B tokens). Despite this small scale, phi-1 attains pass@1 accuracy 50.6% on HumanEval and 55.5% on MBPP. It also displays surprising emergent properties compared to phi-1-base, our model before our finetuning stage on a dataset of coding exercises, and phi-1-small, a smaller model with 350M parameters trained with the same pipeline as phi-1 that still achieves 45% on HumanEval.


zPROBE: Zero Peek Robustness Checks for Federated Learning

arXiv.org Artificial Intelligence

Privacy-preserving federated learning allows multiple users to jointly train a model with coordination of a central server. The server only learns the final aggregation result, thus the users' (private) training data is not leaked from the individual model updates. However, keeping the individual updates private allows malicious users to perform Byzantine attacks and degrade the accuracy without being detected. Best existing defenses against Byzantine workers rely on robust rank-based statistics, e.g., median, to find malicious updates. However, implementing privacy-preserving rank-based statistics is nontrivial and not scalable in the secure domain, as it requires sorting all individual updates. We establish the first private robustness check that uses high break point rank-based statistics on aggregated model updates. By exploiting randomized clustering, we significantly improve the scalability of our defense without compromising privacy. We leverage our statistical bounds in zero-knowledge proofs to detect and remove malicious updates without revealing the private user updates. Our novel framework, zPROBE, enables Byzantine resilient and secure federated learning. Empirical evaluations demonstrate that zPROBE provides a low overhead solution to defend against state-of-the-art Byzantine attacks while preserving privacy.


HASHTAG: Hash Signatures for Online Detection of Fault-Injection Attacks on Deep Neural Networks

arXiv.org Artificial Intelligence

We propose HASHTAG, the first framework that enables high-accuracy detection of fault-injection attacks on Deep Neural Networks (DNNs) with provable bounds on detection performance. Recent literature in fault-injection attacks shows the severe DNN accuracy degradation caused by bit flips. In this scenario, the attacker changes a few weight bits during DNN execution by tampering with the program's DRAM memory. To detect runtime bit flips, HASHTAG extracts a unique signature from the benign DNN prior to deployment. The signature is later used to validate the integrity of the DNN and verify the inference output on the fly. We propose a novel sensitivity analysis scheme that accurately identifies the most vulnerable DNN layers to the fault-injection attack. The DNN signature is then constructed by encoding the underlying weights in the vulnerable layers using a low-collision hash function. When the DNN is deployed, new hashes are extracted from the target layers during inference and compared against the ground-truth signatures. HASHTAG incorporates a lightweight methodology that ensures a low-overhead and real-time fault detection on embedded platforms. Extensive evaluations with the state-of-the-art bit-flip attack on various DNNs demonstrate the competitive advantage of HASHTAG in terms of both attack detection and execution overhead.


CLEANN: Accelerated Trojan Shield for Embedded Neural Networks

arXiv.org Machine Learning

We propose CLEANN, the first end-to-end framework that enables online mitigation of Trojans for embedded Deep Neural Network (DNN) applications. A Trojan attack works by injecting a backdoor in the DNN while training; during inference, the Trojan can be activated by the specific backdoor trigger. What differentiates CLEANN from the prior work is its lightweight methodology which recovers the ground-truth class of Trojan samples without the need for labeled data, model retraining, or prior assumptions on the trigger or the attack. We leverage dictionary learning and sparse approximation to characterize the statistical behavior of benign data and identify Trojan triggers. CLEANN is devised based on algorithm/hardware co-design and is equipped with specialized hardware to enable efficient real-time execution on resource-constrained embedded platforms. Proof of concept evaluations on CLEANN for the state-of-the-art Neural Trojan attacks on visual benchmarks demonstrate its competitive advantage in terms of attack resiliency and execution overhead.


SWNet: Small-World Neural Networks and Rapid Convergence

arXiv.org Artificial Intelligence

Training large and highly accurate deep learning (DL) models is computationally costly. This cost is in great part due to the excessive number of trained parameters, which are well-known to be redundant and compressible for the execution phase. This paper proposes a novel transformation which changes the topology of the DL architecture such that it reaches an optimal cross-layer connectivity. This transformation leverages our important observation that for a set level of accuracy, convergence is fastest when network topology reaches the boundary of a Small-World Network. Small-world graphs are known to possess a specific connectivity structure that enables enhanced signal propagation among nodes. Our small-world models, called SWNets, provide several intriguing benefits: they facilitate data (gradient) flow within the network, enable feature-map reuse by adding long-range connections and accommodate various network architectures/datasets. Compared to densely connected networks (e.g., DenseNets), SWNets require a substantially fewer number of training parameters while maintaining a similar level of classification accuracy. We evaluate our networks on various DL model architectures and image classification datasets, namely, CIFAR10, CIFAR100, and ILSVRC (ImageNet). Our experiments demonstrate an average of ~2.1x improvement in convergence speed to the desired accuracy


CodeX: Bit-Flexible Encoding for Streaming-based FPGA Acceleration of DNNs

arXiv.org Machine Learning

This paper proposes CodeX, an end-to-end framework that facilitates encoding, bitwidth customization, fine-tuning, and implementation of neural networks on FPGA platforms. CodeX incorporates nonlinear encoding to the computation flow of neural networks to save memory. The encoded features demand significantly lower storage compared to the raw full-precision activation values; therefore, the execution flow of CodeX hardware engine is completely performed within the FPGA using on-chip streaming buffers with no access to the off-chip DRAM. We further propose a fully-automated algorithm inspired by reinforcement learning which determines the customized encoding bitwidth across network layers. CodeX full-stack framework comprises of a compiler which takes a high-level Python description of an arbitrary neural network architecture. The compiler then instantiates the corresponding elements from CodeX Hardware library for FPGA implementation. Proof-of-concept evaluations on MNIST, SVHN, and CIFAR-10 datasets demonstrate an average of 4.65x throughput improvement compared to stand-alone weight encoding. We further compare CodeX with six existing full-precision DNN accelerators on ImageNet, showing an average of 3.6x and 2.54x improvement in throughput and performance-per-watt, respectively.