Goto

Collaborating Authors

 Jason Yosinski





An intriguing failing of convolutional neural networks and the CoordConv solution

Neural Information Processing Systems

Few ideas have enjoyed as large an impact on deep learning as convolution. For any problem involving pixels or spatial representations, common intuition holds that convolutional neural networks may be appropriate. In this paper we show a striking counterexample to this intuition via the seemingly trivial coordinate transform problem, which simply requires learning a mapping between coordinates in (x,y) Cartesian space and coordinates in one-hot pixel space. Although convolutional networks would seem appropriate for this task, we show that they fail spectacularly. We demonstrate and carefully analyze the failure first on a toy problem, at which point a simple fix becomes obvious.



LCA: Loss Change Allocation for Neural Network Training

Neural Information Processing Systems

Neural networks enjoy widespread use, but many aspects of their training, representation, and operation are poorly understood. In particular, our view into the training process is limited, with a single scalar loss being the most common viewport into this high-dimensional, dynamic process. We propose a new window into training called Loss Change Allocation (LCA), in which credit for changes to the network loss is conservatively partitioned to the parameters. This measurement is accomplished by decomposing the components of an approximate path integral along the training trajectory using a Runge-Kutta integrator. This rich view shows which parameters are responsible for decreasing or increasing the loss during training, or which parameters "help" or "hurt" the network's learning, respectively. LCA may be summed over training iterations and/or over neurons, channels, or layers for increasingly coarse views. This new measurement device produces several insights into training.


Deconstructing Lottery Tickets: Zeros, Signs, and the Supermask

Neural Information Processing Systems

The recent "Lottery Ticket Hypothesis" paper by Frankle & Carbin showed that a simple approach to creating sparse networks (keeping the large weights) results in models that are trainable from scratch, but only when starting from the same initial weights. The performance of these networks often exceeds the performance of the non-sparse base model, but for reasons that were not well understood. In this paper we study the three critical components of the Lottery Ticket (LT) algorithm, showing that each may be varied significantly without impacting the overall results. Ablating these factors leads to new insights for why LT networks perform as well as they do. We show why setting weights to zero is important, how signs are all you need to make the reinitialized network train, and why masking behaves like training. Finally, we discover the existence of Supermasks, masks that can be applied to an untrained, randomly initialized network to produce a model with performance far better than chance (86% on MNIST, 41% on CIFAR-10).


Synthesizing the preferred inputs for neurons in neural networks via deep generator networks

Neural Information Processing Systems

Deep neural networks (DNNs) have demonstrated state-of-the-art results on many pattern recognition tasks, especially vision classification problems. Understanding the inner workings of such computational brains is both fascinating basic science that is interesting in its own right--similar to why we study the human brain--and will enable researchers to further improve DNNs. One path to understanding how a neural network functions internally is to study what each of its neurons has learned to detect. One such method is called activation maximization (AM), which synthesizes an input (e.g. an image) that highly activates a neuron. Here we dramatically improve the qualitative state of the art of activation maximization by harnessing a powerful, learned prior: a deep generator network (DGN). The algorithm (1) generates qualitatively state-of-the-art synthetic images that look almost real, (2) reveals the features learned by each neuron in an interpretable way, (3) generalizes well to new datasets and somewhat well to different network architectures without requiring the prior to be relearned, and (4) can be considered as a high-quality generative method (in this case, by generating novel, creative, interesting, recognizable images).


SVCCA: Singular Vector Canonical Correlation Analysis for Deep Learning Dynamics and Interpretability

Neural Information Processing Systems

We propose a new technique, Singular Vector Canonical Correlation Analysis (SVCCA), a tool for quickly comparing two representations in a way that is both invariant to affine transform (allowing comparison between different layers and networks) and fast to compute (allowing more comparisons to be calculated than with previous methods). We deploy this tool to measure the intrinsic dimensionality of layers, showing in some cases needless over-parameterization; to probe learning dynamics throughout training, finding that networks converge to final representations from the bottom up; to show where class-specific information in networks is formed; and to suggest new training regimes that simultaneously save computation and overfit less.


An intriguing failing of convolutional neural networks and the CoordConv solution

Neural Information Processing Systems

Few ideas have enjoyed as large an impact on deep learning as convolution. For any problem involving pixels or spatial representations, common intuition holds that convolutional neural networks may be appropriate. In this paper we show a striking counterexample to this intuition via the seemingly trivial coordinate transform problem, which simply requires learning a mapping between coordinates in (x,y) Cartesian space and coordinates in one-hot pixel space. Although convolutional networks would seem appropriate for this task, we show that they fail spectacularly. We demonstrate and carefully analyze the failure first on a toy problem, at which point a simple fix becomes obvious.