Goto

Collaborating Authors

 Japaridze, Giorgi


From formulas to cirquents in computability logic

arXiv.org Artificial Intelligence

Computability logic (CoL) (see http://www.cis.upenn.edu/~giorgi/cl.html) is a recently introduced semantical platform and ambitious program for redeveloping logic as a formal theory of computability, as opposed to the formal theory of truth that logic has more traditionally been. Its expressions represent interactive computational tasks seen as games played by a machine against the environment, and "truth" is understood as existence of an algorithmic winning strategy. With logical operators standing for operations on games, the formalism of CoL is open-ended, and has already undergone series of extensions. This article extends the expressive power of CoL in a qualitatively new way, generalizing formulas (to which the earlier languages of CoL were limited) to circuit-style structures termed cirquents. The latter, unlike formulas, are able to account for subgame/subtask sharing between different parts of the overall game/task. Among the many advantages offered by this ability is that it allows us to capture, refine and generalize the well known independence-friendly logic which, after the present leap forward, naturally becomes a conservative fragment of CoL, just as classical logic had been known to be a conservative fragment of the formula-based version of CoL. Technically, this paper is self-contained, and can be read without any prior familiarity with CoL.


Toggling operators in computability logic

arXiv.org Artificial Intelligence

Computability logic (CL) (see http://www.cis.upenn.edu/~giorgi/cl.html ) is a research program for redeveloping logic as a formal theory of computability, as opposed to the formal theory of truth which it has more traditionally been. Formulas in CL stand for interactive computational problems, seen as games between a machine and its environment; logical operators represent operations on such entities; and "truth" is understood as existence of an effective solution. The formalism of CL is open-ended, and may undergo series of extensions as the studies of the subject advance. So far three -- parallel, sequential and choice -- sorts of conjunction and disjunction have been studied. The present paper adds one more natural kind to this collection, termed toggling. The toggling operations can be characterized as lenient versions of choice operations where choices are retractable, being allowed to be reconsidered any finite number of times. This way, they model trial-and-error style decision steps in interactive computation. The main technical result of this paper is constructing a sound and complete axiomatization for the propositional fragment of computability logic whose vocabulary, together with negation, includes all four -- parallel, toggling, sequential and choice -- kinds of conjunction and disjunction. Along with toggling conjunction and disjunction, the paper also introduces the toggling versions of quantifiers and recurrence operations.


Ptarithmetic

arXiv.org Artificial Intelligence

The present article introduces ptarithmetic (short for "polynomial time arithmetic") -- a formal number theory similar to the well known Peano arithmetic, but based on the recently born computability logic (see http://www.cis.upenn.edu/~giorgi/cl.html) instead of classical logic. The formulas of ptarithmetic represent interactive computational problems rather than just true/false statements, and their "truth" is understood as existence of a polynomial time solution. The system of ptarithmetic elaborated in this article is shown to be sound and complete. Sound in the sense that every theorem T of the system represents an interactive number-theoretic computational problem with a polynomial time solution and, furthermore, such a solution can be effectively extracted from a proof of T. And complete in the sense that every interactive number-theoretic problem with a polynomial time solution is represented by some theorem T of the system. The paper is self-contained, and can be read without any previous familiarity with computability logic.


Towards applied theories based on computability logic

arXiv.org Artificial Intelligence

Computability logic (CL) (see http://www.cis.upenn.edu/~giorgi/cl.html) is a recently launched program for redeveloping logic as a formal theory of computability, as opposed to the formal theory of truth that logic has more traditionally been. Formulas in it represent computational problems, "truth" means existence of an algorithmic solution, and proofs encode such solutions. Within the line of research devoted to finding axiomatizations for ever more expressive fragments of CL, the present paper introduces a new deductive system CL12 and proves its soundness and completeness with respect to the semantics of CL. Conservatively extending classical predicate calculus and offering considerable additional expressive and deductive power, CL12 presents a reasonable, computationally meaningful, constructive alternative to classical logic as a basis for applied theories. To obtain a model example of such theories, this paper rebuilds the traditional, classical-logic-based Peano arithmetic into a computability-logic-based counterpart. Among the purposes of the present contribution is to provide a starting point for what, as the author wishes to hope, might become a new line of research with a potential of interesting findings -- an exploration of the presumably quite unusual metatheory of CL-based arithmetic and other CL-based applied systems.