Januschowski, Tim
Causal Forecasting for Pricing
Schultz, Douglas, Stephan, Johannes, Sieber, Julian, Yeh, Trudie, Kunz, Manuel, Doupe, Patrick, Januschowski, Tim
This paper proposes a novel method for demand forecasting in a pricing context. Here, modeling the causal relationship between price as an input variable to demand is crucial because retailers aim to set prices in a (profit) optimal manner in a downstream decision making problem. Our methods bring together the Double Machine Learning methodology for causal inference and state-of-the-art transformer-based forecasting models. In extensive empirical experiments, we show on the one hand that our method estimates the causal effect better in a fully controlled setting via synthetic, yet realistic data. On the other hand, we demonstrate on real-world data that our method outperforms forecasting methods in off-policy settings (i.e., when there's a change in the pricing policy) while only slightly trailing in the on-policy setting.
Deep Non-Parametric Time Series Forecaster
Rangapuram, Syama Sundar, Gasthaus, Jan, Stella, Lorenzo, Flunkert, Valentin, Salinas, David, Wang, Yuyang, Januschowski, Tim
This paper presents non-parametric baseline models for time series forecasting. Unlike classical forecasting models, the proposed approach does not assume any parametric form for the predictive distribution and instead generates predictions by sampling from the empirical distribution according to a tunable strategy. By virtue of this, the model is always able to produce reasonable forecasts (i.e., predictions within the observed data range) without fail unlike classical models that suffer from numerical stability on some data distributions. Moreover, we develop a global version of the proposed method that automatically learns the sampling strategy by exploiting the information across multiple related time series. The empirical evaluation shows that the proposed methods have reasonable and consistent performance across all datasets, proving them to be strong baselines to be considered in one's forecasting toolbox.
Deep Learning based Forecasting: a case study from the online fashion industry
Kunz, Manuel, Birr, Stefan, Raslan, Mones, Ma, Lei, Li, Zhen, Gouttes, Adele, Koren, Mateusz, Naghibi, Tofigh, Stephan, Johannes, Bulycheva, Mariia, Grzeschik, Matthias, Kekiฤ, Armin, Narodovitch, Michael, Rasul, Kashif, Sieber, Julian, Januschowski, Tim
Demand forecasting in the online fashion industry is particularly amendable to global, data-driven forecasting models because of the industry's set of particular challenges. These include the volume of data, the irregularity, the high amount of turn-over in the catalog and the fixed inventory assumption. While standard deep learning forecasting approaches cater for many of these, the fixed inventory assumption requires a special treatment via controlling the relationship between price and demand closely. In this case study, we describe the data and our modelling approach for this forecasting problem in detail and present empirical results that highlight the effectiveness of our approach.
Criteria for Classifying Forecasting Methods
Januschowski, Tim, Gasthaus, Jan, Wang, Yuyang, Salinas, David, Flunkert, Valentin, Bohlke-Schneider, Michael, Callot, Laurent
Classifying forecasting methods as being either of a "machine learning" or "statistical" nature has become commonplace in parts of the forecasting literature and community, as exemplified by the M4 competition and the conclusion drawn by the organizers. We argue that this distinction does not stem from fundamental differences in the methods assigned to either class. Instead, this distinction is probably of a tribal nature, which limits the insights into the appropriateness and effectiveness of different forecasting methods. We provide alternative characteristics of forecasting methods which, in our view, allow to draw meaningful conclusions. Further, we discuss areas of forecasting which could benefit most from cross-pollination between the ML and the statistics communities.
Multivariate Quantile Function Forecaster
Kan, Kelvin, Aubet, Franรงois-Xavier, Januschowski, Tim, Park, Youngsuk, Benidis, Konstantinos, Ruthotto, Lars, Gasthaus, Jan
We propose Multivariate Quantile Function Forecaster (MQF$^2$), a global probabilistic forecasting method constructed using a multivariate quantile function and investigate its application to multi-horizon forecasting. Prior approaches are either autoregressive, implicitly capturing the dependency structure across time but exhibiting error accumulation with increasing forecast horizons, or multi-horizon sequence-to-sequence models, which do not exhibit error accumulation, but also do typically not model the dependency structure across time steps. MQF$^2$ combines the benefits of both approaches, by directly making predictions in the form of a multivariate quantile function, defined as the gradient of a convex function which we parametrize using input-convex neural networks. By design, the quantile function is monotone with respect to the input quantile levels and hence avoids quantile crossing. We provide two options to train MQF$^2$: with energy score or with maximum likelihood. Experimental results on real-world and synthetic datasets show that our model has comparable performance with state-of-the-art methods in terms of single time step metrics while capturing the time dependency structure.
Intrinsic Anomaly Detection for Multi-Variate Time Series
Rabanser, Stephan, Januschowski, Tim, Rasul, Kashif, Borchert, Oliver, Kurle, Richard, Gasthaus, Jan, Bohlke-Schneider, Michael, Papernot, Nicolas, Flunkert, Valentin
We introduce a novel, practically relevant variation of the anomaly detection problem in multi-variate time series: intrinsic anomaly detection. It appears in diverse practical scenarios ranging from DevOps to IoT, where we want to recognize failures of a system that operates under the influence of a surrounding environment. Intrinsic anomalies are changes in the functional dependency structure between time series that represent an environment and time series that represent the internal state of a system that is placed in said environment. We formalize this problem, provide under-studied public and new purpose-built data sets for it, and present methods that handle intrinsic anomaly detection. These address the short-coming of existing anomaly detection methods that cannot differentiate between expected changes in the system's state and unexpected ones, i.e., changes in the system that deviate from the environment's influence. Our most promising approach is fully unsupervised and combines adversarial learning and time series representation learning, thereby addressing problems such as label sparsity and subjectivity, while allowing to navigate and improve notoriously problematic anomaly detection data sets.
Deep Learning for Time Series Forecasting: Tutorial and Literature Survey
Benidis, Konstantinos, Rangapuram, Syama Sundar, Flunkert, Valentin, Wang, Yuyang, Maddix, Danielle, Turkmen, Caner, Gasthaus, Jan, Bohlke-Schneider, Michael, Salinas, David, Stella, Lorenzo, Aubet, Francois-Xavier, Callot, Laurent, Januschowski, Tim
Deep learning based forecasting methods have become the methods of choice in many applications of time series prediction or forecasting often outperforming other approaches. Consequently, over the last years, these methods are now ubiquitous in large-scale industrial forecasting applications and have consistently ranked among the best entries in forecasting competitions (e.g., M4 and M5). This practical success has further increased the academic interest to understand and improve deep forecasting methods. In this article we provide an introduction and overview of the field: We present important building blocks for deep forecasting in some depth; using these building blocks, we then survey the breadth of the recent deep forecasting literature.
Forecasting: theory and practice
Petropoulos, Fotios, Apiletti, Daniele, Assimakopoulos, Vassilios, Babai, Mohamed Zied, Barrow, Devon K., Taieb, Souhaib Ben, Bergmeir, Christoph, Bessa, Ricardo J., Bijak, Jakub, Boylan, John E., Browell, Jethro, Carnevale, Claudio, Castle, Jennifer L., Cirillo, Pasquale, Clements, Michael P., Cordeiro, Clara, Oliveira, Fernando Luiz Cyrino, De Baets, Shari, Dokumentov, Alexander, Ellison, Joanne, Fiszeder, Piotr, Franses, Philip Hans, Frazier, David T., Gilliland, Michael, Gรถnรผl, M. Sinan, Goodwin, Paul, Grossi, Luigi, Grushka-Cockayne, Yael, Guidolin, Mariangela, Guidolin, Massimo, Gunter, Ulrich, Guo, Xiaojia, Guseo, Renato, Harvey, Nigel, Hendry, David F., Hollyman, Ross, Januschowski, Tim, Jeon, Jooyoung, Jose, Victor Richmond R., Kang, Yanfei, Koehler, Anne B., Kolassa, Stephan, Kourentzes, Nikolaos, Leva, Sonia, Li, Feng, Litsiou, Konstantia, Makridakis, Spyros, Martin, Gael M., Martinez, Andrew B., Meeran, Sheik, Modis, Theodore, Nikolopoulos, Konstantinos, รnkal, Dilek, Paccagnini, Alessia, Panagiotelis, Anastasios, Panapakidis, Ioannis, Pavรญa, Jose M., Pedio, Manuela, Pedregal, Diego J., Pinson, Pierre, Ramos, Patrรญcia, Rapach, David E., Reade, J. James, Rostami-Tabar, Bahman, Rubaszek, Michaล, Sermpinis, Georgios, Shang, Han Lin, Spiliotis, Evangelos, Syntetos, Aris A., Talagala, Priyanga Dilini, Talagala, Thiyanga S., Tashman, Len, Thomakos, Dimitrios, Thorarinsdottir, Thordis, Todini, Ezio, Arenas, Juan Ramรณn Trapero, Wang, Xiaoqian, Winkler, Robert L., Yusupova, Alisa, Ziel, Florian
Forecasting has always been at the forefront of decision making and planning. The uncertainty that surrounds the future is both exciting and challenging, with individuals and organisations seeking to minimise risks and maximise utilities. The large number of forecasting applications calls for a diverse set of forecasting methods to tackle real-life challenges. This article provides a non-systematic review of the theory and the practice of forecasting. We provide an overview of a wide range of theoretical, state-of-the-art models, methods, principles, and approaches to prepare, produce, organise, and evaluate forecasts. We then demonstrate how such theoretical concepts are applied in a variety of real-life contexts. We do not claim that this review is an exhaustive list of methods and applications. However, we wish that our encyclopedic presentation will offer a point of reference for the rich work that has been undertaken over the last decades, with some key insights for the future of forecasting theory and practice. Given its encyclopedic nature, the intended mode of reading is non-linear. We offer cross-references to allow the readers to navigate through the various topics. We complement the theoretical concepts and applications covered by large lists of free or open-source software implementations and publicly-available databases.
Meta-Forecasting by combining Global Deep Representations with Local Adaptation
Grazzi, Riccardo, Flunkert, Valentin, Salinas, David, Januschowski, Tim, Seeger, Matthias, Archambeau, Cedric
While classical time series forecasting considers individual time series in isolation, recent advances based on deep learning showed that jointly learning from a large pool of related time series can boost the forecasting accuracy. However, the accuracy of these methods suffers greatly when modeling out-of-sample time series, significantly limiting their applicability compared to classical forecasting methods. To bridge this gap, we adopt a meta-learning view of the time series forecasting problem. We introduce a novel forecasting method, called Meta Global-Local Auto-Regression (Meta-GLAR), that adapts to each time series by learning in closed-form the mapping from the representations produced by a recurrent neural network (RNN) to one-step-ahead forecasts. Crucially, the parameters of the RNN are learned across multiple time series by backpropagating through the closed-form adaptation mechanism. In our extensive empirical evaluation we show that our method is competitive with the state-of-the-art in out-of-sample forecasting accuracy reported in earlier work.
Intermittent Demand Forecasting with Renewal Processes
Turkmen, Ali Caner, Januschowski, Tim, Wang, Yuyang, Cemgil, Ali Taylan
Intermittency is a common and challenging problem in demand forecasting. We introduce a new, unified framework for building intermittent demand forecasting models, which incorporates and allows to generalize existing methods in several directions. Our framework is based on extensions of well-established model-based methods to discrete-time renewal processes, which can parsimoniously account for patterns such as aging, clustering and quasi-periodicity in demand arrivals. The connection to discrete-time renewal processes allows not only for a principled extension of Croston-type models, but also for an natural inclusion of neural network based models---by replacing exponential smoothing with a recurrent neural network. We also demonstrate that modeling continuous-time demand arrivals, i.e., with a temporal point process, is possible via a trivial extension of our framework. This leads to more flexible modeling in scenarios where data of individual purchase orders are directly available with granular timestamps. Complementing this theoretical advancement, we demonstrate the efficacy of our framework for forecasting practice via an extensive empirical study on standard intermittent demand data sets, in which we report predictive accuracy in a variety of scenarios that compares favorably to the state of the art.