Janjua, Muhammad Kamran
Fantastic Multi-Task Gradient Updates and How to Find Them In a Cone
Hassanpour, Negar, Janjua, Muhammad Kamran, Zhang, Kunlin, Lavasani, Sepehr, Zhang, Xiaowen, Zhou, Chunhua, Gao, Chao
Balancing competing objectives remains a fundamental challenge in multi-task learning (MTL), primarily due to conflicting gradients across individual tasks. A common solution relies on computing a dynamic gradient update vector that balances competing tasks as optimization progresses. Building on this idea, we propose ConicGrad, a principled, scalable, and robust MTL approach formulated as a constrained optimization problem. Our method introduces an angular constraint to dynamically regulate gradient update directions, confining them within a cone centered on the reference gradient of the overall objective. By balancing task-specific gradients without over-constraining their direction or magnitude, ConicGrad effectively resolves inter-task gradient conflicts. Moreover, our framework ensures computational efficiency and scalability to high-dimensional parameter spaces. We conduct extensive experiments on standard supervised learning and reinforcement learning MTL benchmarks, and demonstrate that ConicGrad achieves state-of-the-art performance across diverse tasks.
Learning Truncated Causal History Model for Video Restoration
Ghasemabadi, Amirhosein, Janjua, Muhammad Kamran, Salameh, Mohammad, Niu, Di
One key challenge to video restoration is to model the transition dynamics of video frames governed by motion. In this work, we propose TURTLE to learn the truncated causal history model for efficient and high-performing video restoration. Unlike traditional methods that process a range of contextual frames in parallel, TURTLE enhances efficiency by storing and summarizing a truncated history of the input frame latent representation into an evolving historical state. This is achieved through a sophisticated similarity-based retrieval mechanism that implicitly accounts for inter-frame motion and alignment. The causal design in TURTLE enables recurrence in inference through state-memorized historical features while allowing parallel training by sampling truncated video clips. We report new state-of-the-art results on a multitude of video restoration benchmark tasks, including video desnowing, nighttime video deraining, video raindrops and rain streak removal, video super-resolution, real-world and synthetic video deblurring, and blind video denoising while reducing the computational cost compared to existing best contextual methods on all these tasks.
CascadedGaze: Efficiency in Global Context Extraction for Image Restoration
Ghasemabadi, Amirhosein, Salameh, Mohammad, Janjua, Muhammad Kamran, Zhou, Chunhua, Sun, Fengyu, Niu, Di
Image restoration tasks traditionally rely on convolutional neural networks. However, given the local nature of the convolutional operator, they struggle to capture global information. The promise of attention mechanisms in Transformers is to circumvent this problem, but it comes at the cost of intensive computational overhead. Many recent studies in image restoration have focused on solving the challenge of balancing performance and computational cost via Transformer variants. In this paper, we present CascadedGaze Network (CGNet), an encoder-decoder architecture that employs Global Context Extractor (GCE), a novel and efficient way to capture global information for image restoration. The GCE module leverages small kernels across convolutional layers to learn global dependencies, without requiring self-attention. Extensive experimental results show that our approach outperforms a range of state-of-the-art methods on denoising benchmark datasets including both real image denoising and synthetic image denoising, as well as on image deblurring task, while being more computationally efficient.
GVFs in the Real World: Making Predictions Online for Water Treatment
Janjua, Muhammad Kamran, Shah, Haseeb, White, Martha, Miahi, Erfan, Machado, Marlos C., White, Adam
In this paper we investigate the use of reinforcement-learning based prediction approaches for a real drinking-water treatment plant. Developing such a prediction system is a critical step on the path to optimizing and automating water treatment. Before that, there are many questions to answer about the predictability of the data, suitable neural network architectures, how to overcome partial observability and more. We first describe this dataset, and highlight challenges with seasonality, nonstationarity, partial observability, and heterogeneity across sensors and operation modes of the plant. We then describe General Value Function (GVF) predictions -- discounted cumulative sums of observations -- and highlight why they might be preferable to classical n-step predictions common in time series prediction. We discuss how to use offline data to appropriately pre-train our temporal difference learning (TD) agents that learn these GVF predictions, including how to select hyperparameters for online fine-tuning in deployment. We find that the TD-prediction agent obtains an overall lower normalized mean-squared error than the n-step prediction agent. Finally, we show the importance of learning in deployment, by comparing a TD agent trained purely offline with no online updating to a TD agent that learns online. This final result is one of the first to motivate the importance of adapting predictions in real-time, for non-stationary high-volume systems in the real world.