Goto

Collaborating Authors

 Jang, Sujin


3D Occupancy Prediction with Low-Resolution Queries via Prototype-aware View Transformation

arXiv.org Artificial Intelligence

The resolution of voxel queries significantly influences the quality of view transformation in camera-based 3D occupancy prediction. However, computational constraints and the practical necessity for real-time deployment require smaller query resolutions, which inevitably leads to an information loss. Therefore, it is essential to encode and preserve rich visual details within limited query sizes while ensuring a comprehensive representation of 3D occupancy. To this end, we introduce ProtoOcc, a novel occupancy network that leverages prototypes of clustered image segments in view transformation to enhance low-resolution context. In particular, the mapping of 2D prototypes onto 3D voxel queries encodes high-level visual geometries and complements the loss of spatial information from reduced query resolutions. Additionally, we design a multi-perspective decoding strategy to efficiently disentangle the densely compressed visual cues into a high-dimensional 3D occupancy scene. Experimental results on both Occ3D and SemanticKITTI benchmarks demonstrate the effectiveness of the proposed method, showing clear improvements over the baselines. More importantly, ProtoOcc achieves competitive performance against the baselines even with 75\% reduced voxel resolution.


Unveiling the Hidden: Online Vectorized HD Map Construction with Clip-Level Token Interaction and Propagation

arXiv.org Artificial Intelligence

Predicting and constructing road geometric information (e.g., lane lines, road markers) is a crucial task for safe autonomous driving, while such static map elements can be repeatedly occluded by various dynamic objects on the road. Recent studies have shown significantly improved vectorized high-definition (HD) map construction performance, but there has been insufficient investigation of temporal information across adjacent input frames (i.e., clips), which may lead to inconsistent and suboptimal prediction results. To tackle this, we introduce a novel paradigm of clip-level vectorized HD map construction, MapUnveiler, which explicitly unveils the occluded map elements within a clip input by relating dense image representations with efficient clip tokens. Additionally, MapUnveiler associates inter-clip information through clip token propagation, effectively utilizing long-term temporal map information. MapUnveiler runs efficiently with the proposed clip-level pipeline by avoiding redundant computation with temporal stride while building a global map relationship. Our extensive experiments demonstrate that MapUnveiler achieves state-of-the-art performance on both the nuScenes and Argoverse2 benchmark datasets. We also showcase that MapUnveiler significantly outperforms state-of-the-art approaches in a challenging setting, achieving +10.7% mAP improvement in heavily occluded driving road scenes. The project page can be found at https://mapunveiler.github.io.


Restoring and Mining the Records of the Joseon Dynasty via Neural Language Modeling and Machine Translation

arXiv.org Artificial Intelligence

Understanding voluminous historical records provides clues on the past in various aspects, such as social and political issues and even natural science facts. However, it is generally difficult to fully utilize the historical records, since most of the documents are not written in a modern language and part of the contents are damaged over time. As a result, restoring the damaged or unrecognizable parts as well as translating the records into modern languages are crucial tasks. In response, we present a multi-task learning approach to restore and translate historical documents based on a self-attention mechanism, specifically utilizing two Korean historical records, ones of the most voluminous historical records in the world. Experimental results show that our approach significantly improves the accuracy of the translation task than baselines without multi-task learning. In addition, we present an in-depth exploratory analysis on our translated results via topic modeling, uncovering several significant historical events.