Jang, Soobeom
Amicable Aid: Perturbing Images to Improve Classification Performance
Kim, Juyeop, Choi, Jun-Ho, Jang, Soobeom, Lee, Jong-Seok
While adversarial perturbation of images to attack deep image classification models pose serious security concerns in practice, this paper suggests a novel paradigm where the concept of image perturbation can benefit classification performance, which we call amicable aid. We show that by taking the opposite search direction of perturbation, an image can be modified to yield higher classification confidence and even a misclassified image can be made correctly classified. This can be also achieved with a large amount of perturbation by which the image is made unrecognizable by human eyes. The mechanism of the amicable aid is explained in the viewpoint of the underlying natural image manifold. Furthermore, we investigate the universal amicable aid, i.e., a fixed perturbation can be applied to multiple images to improve their classification results. While it is challenging to find such perturbations, we show that making the decision boundary as perpendicular to the image manifold as possible via training with modified data is effective to obtain a model for which universal amicable perturbations are more easily found.
Brain Signal Classification via Learning Connectivity Structure
Jang, Soobeom, Moon, Seong-Eun, Lee, Jong-Seok
Connectivity between different brain regions is one of the most important properties for classification of brain signals including electroencephalography (EEG). However, how to define the connectivity structure for a given task is still an open problem, because there is no ground truth about how the connectivity structure should be in order to maximize the performance. In this paper, we propose an end-to-end neural network model for EEG classification, which can extract an appropriate multi-layer graph structure and signal features directly from a set of raw EEG signals and perform classification. Experimental results demonstrate that our method yields improved performance in comparison to the existing approaches where manually defined connectivity structures and signal features are used. Furthermore, we show that the graph structure extraction process is reliable in terms of consistency, and the learned graph structures make much sense in the neuroscientific viewpoint.