Jang, Se-In
TauPETGen: Text-Conditional Tau PET Image Synthesis Based on Latent Diffusion Models
Jang, Se-In, Lois, Cristina, Thibault, Emma, Becker, J. Alex, Dong, Yafei, Normandin, Marc D., Price, Julie C., Johnson, Keith A., Fakhri, Georges El, Gong, Kuang
In this work, we developed a novel text-guided image synthesis technique which could generate realistic tau PET images from textual descriptions and the subject's MR image. The generated tau PET images have the potential to be used in examining relations between different measures and also increasing the public availability of tau PET datasets. The method was based on latent diffusion models. Both textual descriptions and the subject's MR prior image were utilized as conditions during image generation. The subject's MR image can provide anatomical details, while the text descriptions, such as gender, scan time, cognitive test scores, and amyloid status, can provide further guidance regarding where the tau neurofibrillary tangles might be deposited. Preliminary experimental results based on clinical [18F]MK-6240 datasets demonstrate the feasibility of the proposed method in generating realistic tau PET images at different clinical stages.
Deterministic Online Classification: Non-iteratively Reweighted Recursive Least-Squares for Binary Class Rebalancing
Jang, Se-In
Deterministic solutions are becoming more critical for interpretability. Weighted Least-Squares (WLS) has been widely used as a deterministic batch solution with a specific weight design. In the online settings of WLS, exact reweighting is necessary to converge to its batch settings. In order to comply with its necessity, the iteratively reweighted least-squares algorithm is mainly utilized with a linearly growing time complexity which is not attractive for online learning. Due to the high and growing computational costs, an efficient online formulation of reweighted least-squares is desired. We introduce a new deterministic online classification algorithm of WLS with a constant time complexity for binary class rebalancing. We demonstrate that our proposed online formulation exactly converges to its batch formulation and outperforms existing state-of-the-art stochastic online binary classification algorithms in real-world data sets empirically.
A Noise-level-aware Framework for PET Image Denoising
Li, Ye, Cui, Jianan, Chen, Junyu, Zeng, Guodong, Wollenweber, Scott, Jansen, Floris, Jang, Se-In, Kim, Kyungsang, Gong, Kuang, Li, Quanzheng
In PET, the amount of relative (signal-dependent) noise present in different body regions can be significantly different and is inherently related to the number of counts present in that region. The number of counts in a region depends, in principle and among other factors, on the total administered activity, scanner sensitivity, image acquisition duration, radiopharmaceutical tracer uptake in the region, and patient local body morphometry surrounding the region. In theory, less amount of denoising operations is needed to denoise a high-count (low relative noise) image than images a low-count (high relative noise) image, and vice versa. The current deep-learning-based methods for PET image denoising are predominantly trained on image appearance only and have no special treatment for images of different noise levels. Our hypothesis is that by explicitly providing the local relative noise level of the input image to a deep convolutional neural network (DCNN), the DCNN can outperform itself trained on image appearance only. To this end, we propose a noise-level-aware framework denoising framework that allows embedding of local noise level into a DCNN. The proposed is trained and tested on 30 and 15 patient PET images acquired on a GE Discovery MI PET/CT system. Our experiments showed that the increases in both PSNR and SSIM from our backbone network with relative noise level embedding (NLE) versus the same network without NLE were statistically significant with p<0.001, and the proposed method significantly outperformed a strong baseline method by a large margin.
Online Passive-Aggressive Total-Error-Rate Minimization
Jang, Se-In
We provide a new online learning algorithm which utilizes online passive-aggressive learning (PA) and total-error-rate minimization (TER) for binary classification. The PA learning establishes not only large margin training but also the capacity to handle non-separable data. The TER learning on the other hand minimizes an approximated classification error based objective function. We propose an online PATER algorithm which combines those useful properties. In addition, we also present a weighted PATER algorithm to improve the ability to cope with data imbalance problems. Experimental results demonstrate that the proposed PATER algorithms achieves better performances in terms of efficiency and effectiveness than the existing state-of-the-art online learning algorithms in real-world data sets.