Goto

Collaborating Authors

 Jang, Kangwook


MoHAVE: Mixture of Hierarchical Audio-Visual Experts for Robust Speech Recognition

arXiv.org Artificial Intelligence

Audio-visual speech recognition (AVSR) has become critical for enhancing speech recognition in noisy environments by integrating both auditory and visual modalities. However, existing AVSR systems struggle to scale up without compromising computational efficiency. In this study, we introduce MoHAVE (Mixture of Hierarchical Audio-Visual Experts), a novel robust AVSR framework designed to address these scalability constraints. By leveraging a Mixture-of-Experts (MoE) architecture, MoHAVE activates modality-specific expert groups, ensuring dynamic adaptation to various audio-visual inputs with minimal computational overhead. Key contributions of MoHAVE include: (1) a sparse MoE framework that efficiently scales AVSR model capacity, (2) a hierarchical gating mechanism that dynamically utilizes the expert groups based on input context, enhancing adaptability and robustness, and (3) remarkable performance across robust AVSR benchmarks, including LRS3 and MuAViC transcription and translation tasks, setting a new standard for scalable speech recognition systems.


Improving Cross-Lingual Phonetic Representation of Low-Resource Languages Through Language Similarity Analysis

arXiv.org Artificial Intelligence

This paper examines how linguistic similarity affects cross-lingual phonetic representation in speech processing for low-resource languages, emphasizing effective source language selection. Previous cross-lingual research has used various source languages to enhance performance for the target low-resource language without thorough consideration of selection. Our study stands out by providing an in-depth analysis of language selection, supported by a practical approach to assess phonetic proximity among multiple language families. We investigate how within-family similarity impacts performance in multilingual training, which aids in understanding language dynamics. We also evaluate the effect of using phonologically similar languages, regardless of family. For the phoneme recognition task, utilizing phonologically similar languages consistently achieves a relative improvement of 55.6% over monolingual training, even surpassing the performance of a large-scale self-supervised learning model. Multilingual training within the same language family demonstrates that higher phonological similarity enhances performance, while lower similarity results in degraded performance compared to monolingual training.


Learning Video Temporal Dynamics with Cross-Modal Attention for Robust Audio-Visual Speech Recognition

arXiv.org Artificial Intelligence

Audio-visual speech recognition (AVSR) aims to transcribe human speech using both audio and video modalities. In practical environments with noise-corrupted audio, the role of video information becomes crucial. However, prior works have primarily focused on enhancing audio features in AVSR, overlooking the importance of video features. In this study, we strengthen the video features by learning three temporal dynamics in video data: context order, playback direction, and the speed of video frames. Cross-modal attention modules are introduced to enrich video features with audio information so that speech variability can be taken into account when training on the video temporal dynamics. Based on our approach, we achieve the state-of-the-art performance on the LRS2 and LRS3 AVSR benchmarks for the noise-dominant settings. Our approach excels in scenarios especially for babble and speech noise, indicating the ability to distinguish the speech signal that should be recognized from lip movements in the video modality. We support the validity of our methodology by offering the ablation experiments for the temporal dynamics losses and the cross-modal attention architecture design.


STaR: Distilling Speech Temporal Relation for Lightweight Speech Self-Supervised Learning Models

arXiv.org Artificial Intelligence

Albeit great performance of Transformer-based speech selfsupervised learning (SSL) models, their large parameter size and computational cost make them unfavorable to utilize. In this study, we propose to compress the speech SSL models by distilling speech temporal relation (STaR). Unlike previous works that directly match the representation for each speech frame, STaR distillation transfers temporal relation between speech frames, which is more suitable for lightweight student with limited capacity. We explore three STaR distillation objectives and select the best combination as the final STaR loss. Our model distilled from HuBERT BASE achieves an overall score of 79.8 on SUPERB benchmark, the best performance among models with up to 27 million parameters. We show that our method is applicable across different speech SSL models and maintains robust performance with further reduced parameters.


Recycle-and-Distill: Universal Compression Strategy for Transformer-based Speech SSL Models with Attention Map Reusing and Masking Distillation

arXiv.org Artificial Intelligence

Transformer-based speech self-supervised learning (SSL) models, such as HuBERT, show surprising performance in various speech processing tasks. However, huge number of parameters in speech SSL models necessitate the compression to a more compact model for wider usage in academia or small companies. In this study, we suggest to reuse attention maps across the Transformer layers, so as to remove key and query parameters while retaining the number of layers. Furthermore, we propose a novel masking distillation strategy to improve the student model's speech representation quality. We extend the distillation loss to utilize both masked and unmasked speech frames to fully leverage the teacher model's high-quality representation. Our universal compression strategy yields the student model that achieves phoneme error rate (PER) of 7.72% and word error rate (WER) of 9.96% on the SUPERB benchmark.