Goto

Collaborating Authors

 Jang, Gil-jin


A Probabilistic Approach to Single Channel Blind Signal Separation

Neural Information Processing Systems

We present a new technique for achieving source separation when given only a single channel recording. The main idea is based on exploiting the inherent time structure of sound sources by learning a priori sets of basis filters in time domain that encode the sources in a statistically efficient manner. We derive a learning algorithm using a maximum likelihood approach given the observed single channel data and sets of basis filters.


A Probabilistic Approach to Single Channel Blind Signal Separation

Neural Information Processing Systems

We present a new technique for achieving source separation when given only a single channel recording. The main idea is based on exploiting the inherent time structure of sound sources by learning a priori sets of basis filters in time domain that encode the sources in a statistically efficient manner. We derive a learning algorithm using a maximum likelihood approach given the observed single channel data and sets of basis filters.