Jamone, Lorenzo
General Force Sensation for Tactile Robot
Chen, Zhuo, Ou, Ni, Zhang, Xuyang, Wu, Zhiyuan, Zhao, Yongqiang, Wang, Yupeng, Lepora, Nathan, Jamone, Lorenzo, Deng, Jiankang, Luo, Shan
Robotic tactile sensors, including vision-based and taxel-based sensors, enable agile manipulation and safe human-robot interaction through force sensation. However, variations in structural configurations, measured signals, and material properties create domain gaps that limit the transferability of learned force sensation across different tactile sensors. Here, we introduce GenForce, a general framework for achieving transferable force sensation across both homogeneous and heterogeneous tactile sensors in robotic systems. By unifying tactile signals into marker-based binary tactile images, GenForce enables the transfer of existing force labels to arbitrary target sensors using a marker-to-marker translation technique with a few paired data. This process equips uncalibrated tactile sensors with force prediction capabilities through spatiotemporal force prediction models trained on the transferred data. Extensive experimental results validate GenForce's generalizability, accuracy, and robustness across sensors with diverse marker patterns, structural designs, material properties, and sensing principles. The framework significantly reduces the need for costly and labor-intensive labeled data collection, enabling the rapid deployment of multiple tactile sensors on robotic hands requiring force sensing capabilities.
Leveraging Tactile Sensing to Render both Haptic Feedback and Virtual Reality 3D Object Reconstruction in Robotic Telemanipulation
Giudici, Gabriele, Bonzini, Aramis Augusto, Coppola, Claudio, Althoefer, Kaspar, Farkhatdinov, Ildar, Jamone, Lorenzo
Abstract-- Dexterous robotic manipulator teleoperation is widely used in many applications, either where it is convenient to keep the human inside the control loop, or to train advanced robot agents. So far, this technology has been used in combination with camera systems with remarkable success. On the other hand, only a limited number of studies have focused on leveraging haptic feedback from tactile sensors in contexts where camera-based systems fail, such as due to self-occlusions or poor light conditions like smoke. This study demonstrates the feasibility of precise pick-and-place teleoperation without cameras by leveraging tactile-based 3D object reconstruction in VR and providing haptic feedback to a blindfolded user. Our preliminary results show that integrating these technologies enables the successful completion of telemanipulation tasks previously dependent on cameras, paving the way for more complex future applications.
Haptic Stiffness Perception Using Hand Exoskeletons in Tactile Robotic Telemanipulation
Giudici, Gabriele, Coppola, Claudio, Althoefer, Kaspar, Farkhatdinov, Ildar, Jamone, Lorenzo
Robotic telemanipulation - the human-guided manipulation of remote objects - plays a pivotal role in several applications, from healthcare to operations in harsh environments. While visual feedback from cameras can provide valuable information to the human operator, haptic feedback is essential for accessing specific object properties that are difficult to be perceived by vision, such as stiffness. For the first time, we present a participant study demonstrating that operators can perceive the stiffness of remote objects during real-world telemanipulation with a dexterous robotic hand, when haptic feedback is generated from tactile sensing fingertips. Participants were tasked with squeezing soft objects by teleoperating a robotic hand, using two methods of haptic feedback: one based solely on the measured contact force, while the second also includes the squeezing displacement between the leader and follower devices. Our results demonstrate that operators are indeed capable of discriminating objects of different stiffness, relying on haptic feedback alone and without any visual feedback. Additionally, our findings suggest that the displacement feedback component may enhance discrimination with objects of similar stiffness.
DexSkills: Skill Segmentation Using Haptic Data for Learning Autonomous Long-Horizon Robotic Manipulation Tasks
Mao, Xiaofeng, Giudici, Gabriele, Coppola, Claudio, Althoefer, Kaspar, Farkhatdinov, Ildar, Li, Zhibin, Jamone, Lorenzo
Effective execution of long-horizon tasks with dexterous robotic hands remains a significant challenge in real-world problems. While learning from human demonstrations have shown encouraging results, they require extensive data collection for training. Hence, decomposing long-horizon tasks into reusable primitive skills is a more efficient approach. To achieve so, we developed DexSkills, a novel supervised learning framework that addresses long-horizon dexterous manipulation tasks using primitive skills. DexSkills is trained to recognize and replicate a select set of skills using human demonstration data, which can then segment a demonstrated long-horizon dexterous manipulation task into a sequence of primitive skills to achieve one-shot execution by the robot directly. Significantly, DexSkills operates solely on proprioceptive and tactile data, i.e., haptic data. Our real-world robotic experiments show that DexSkills can accurately segment skills, thereby enabling autonomous robot execution of a diverse range of tasks.
Finding safe 3D robot grasps through efficient haptic exploration with unscented Bayesian optimization and collision penalty
Castanheira, Joao, Vicente, Pedro, Martinez-Cantin, Ruben, Jamone, Lorenzo, Bernardino, Alexandre
Robust grasping is a major, and still unsolved, problem in robotics. Information about the 3D shape of an object can be obtained either from prior knowledge (e.g., accurate models of known objects or approximate models of familiar objects) or real-time sensing (e.g., partial point clouds of unknown objects) and can be used to identify good potential grasps. However, due to modeling and sensing inaccuracies, local exploration is often needed to refine such grasps and successfully apply them in the real world. The recently proposed unscented Bayesian optimization technique can make such exploration safer by selecting grasps that are robust to uncertainty in the input space (e.g., inaccuracies in the grasp execution). Extending our previous work on 2D optimization, in this paper we propose a 3D haptic exploration strategy that combines unscented Bayesian optimization with a novel collision penalty heuristic to find safe grasps in a very efficient way: while by augmenting the search-space to 3D we are able to find better grasps, the collision penalty heuristic allows us to do so without increasing the number of exploration steps.
Robotics for poultry farming: challenges and opportunities
Ozenturk, Ugur, Chen, Zhengqi, Jamone, Lorenzo, Versace, Elisabetta
Poultry farming plays a pivotal role in addressing human food demand. Robots are emerging as promising tools in poultry farming, with the potential to address sustainability issues while meeting the increasing production needs and demand for animal welfare. This review aims to identify the current advancements, limitations and future directions of development for robotics in poultry farming by examining existing challenges, solutions and innovative research, including robot-animal interactions. We cover the application of robots in different areas, from environmental monitoring to disease control, floor eggs collection and animal welfare. Robots not only demonstrate effective implementation on farms but also hold potential for ethological research on collective and social behaviour, which can in turn drive a better integration in industrial farming, with improved productivity and enhanced animal welfare.
Visuo-Haptic Object Perception for Robots: An Overview
Navarro-Guerrero, Nicolás, Toprak, Sibel, Josifovski, Josip, Jamone, Lorenzo
The object perception capabilities of humans are impressive, and this becomes even more evident when trying to develop solutions with a similar proficiency in autonomous robots. While there have been notable advancements in the technologies for artificial vision and touch, the effective integration of these two sensory modalities in robotic applications still needs to be improved, and several open challenges exist. Taking inspiration from how humans combine visual and haptic perception to perceive object properties and drive the execution of manual tasks, this article summarises the current state of the art of visuo-haptic object perception in robots. Firstly, the biological basis of human multimodal object perception is outlined. Then, the latest advances in sensing technologies and data collection strategies for robots are discussed. Next, an overview of the main computational techniques is presented, highlighting the main challenges of multimodal machine learning and presenting a few representative articles in the areas of robotic object recognition, peripersonal space representation and manipulation. Finally, informed by the latest advancements and open challenges, this article outlines promising new research directions.
World Models and Predictive Coding for Cognitive and Developmental Robotics: Frontiers and Challenges
Taniguchi, Tadahiro, Murata, Shingo, Suzuki, Masahiro, Ognibene, Dimitri, Lanillos, Pablo, Ugur, Emre, Jamone, Lorenzo, Nakamura, Tomoaki, Ciria, Alejandra, Lara, Bruno, Pezzulo, Giovanni
Creating autonomous robots that can actively explore the environment, acquire knowledge and learn skills continuously is the ultimate achievement envisioned in cognitive and developmental robotics. Their learning processes should be based on interactions with their physical and social world in the manner of human learning and cognitive development. Based on this context, in this paper, we focus on the two concepts of world models and predictive coding. Recently, world models have attracted renewed attention as a topic of considerable interest in artificial intelligence. Cognitive systems learn world models to better predict future sensory observations and optimize their policies, i.e., controllers. Alternatively, in neuroscience, predictive coding proposes that the brain continuously predicts its inputs and adapts to model its own dynamics and control behavior in its environment. Both ideas may be considered as underpinning the cognitive development of robots and humans capable of continual or lifelong learning. Although many studies have been conducted on predictive coding in cognitive robotics and neurorobotics, the relationship between world model-based approaches in AI and predictive coding in robotics has rarely been discussed. Therefore, in this paper, we clarify the definitions, relationships, and status of current research on these topics, as well as missing pieces of world models and predictive coding in conjunction with crucially related concepts such as the free-energy principle and active inference in the context of cognitive and developmental robotics. Furthermore, we outline the frontiers and challenges involved in world models and predictive coding toward the further integration of AI and robotics, as well as the creation of robots with real cognitive and developmental capabilities in the future.
Beyond the Self: Using Grounded Affordances to Interpret and Describe Others' Actions
Saponaro, Giovanni, Jamone, Lorenzo, Bernardino, Alexandre, Salvi, Giampiero
We propose a developmental approach that allows a robot to interpret and describe the actions of human agents by reusing previous experience. The robot first learns the association between words and object affordances by manipulating the objects in its environment. It then uses this information to learn a mapping between its own actions and those performed by a human in a shared environment. It finally fuses the information from these two models to interpret and describe human actions in light of its own experience. In our experiments, we show that the model can be used flexibly to do inference on different aspects of the scene. We can predict the effects of an action on the basis of object properties. We can revise the belief that a certain action occurred, given the observed effects of the human action. In an early action recognition fashion, we can anticipate the effects when the action has only been partially observed. By estimating the probability of words given the evidence and feeding them into a pre-defined grammar, we can generate relevant descriptions of the scene. We believe that this is a step towards providing robots with the fundamental skills to engage in social collaboration with humans.
Symbol Emergence in Cognitive Developmental Systems: a Survey
Taniguchi, Tadahiro, Ugur, Emre, Hoffmann, Matej, Jamone, Lorenzo, Nagai, Takayuki, Rosman, Benjamin, Matsuka, Toshihiko, Iwahashi, Naoto, Oztop, Erhan, Piater, Justus, Wörgötter, Florentin
Humans use signs, e.g., sentences in a spoken language, for communication and thought. Hence, symbol systems like language are crucial for our communication with other agents and adaptation to our real-world environment. The symbol systems we use in our human society adaptively and dynamically change over time. In the context of artificial intelligence (AI) and cognitive systems, the symbol grounding problem has been regarded as one of the central problems related to {\it symbols}. However, the symbol grounding problem was originally posed to connect symbolic AI and sensorimotor information and did not consider many interdisciplinary phenomena in human communication and dynamic symbol systems in our society, which semiotics considered. In this paper, we focus on the symbol emergence problem, addressing not only cognitive dynamics but also the dynamics of symbol systems in society, rather than the symbol grounding problem. We first introduce the notion of a symbol in semiotics from the humanities, to leave the very narrow idea of symbols in symbolic AI. Furthermore, over the years, it became more and more clear that symbol emergence has to be regarded as a multifaceted problem. Therefore, secondly, we review the history of the symbol emergence problem in different fields, including both biological and artificial systems, showing their mutual relations. We summarize the discussion and provide an integrative viewpoint and comprehensive overview of symbol emergence in cognitive systems. Additionally, we describe the challenges facing the creation of cognitive systems that can be part of symbol emergence systems.