James Cheng
Accelerated First-order Methods for Geodesically Convex Optimization on Riemannian Manifolds
Yuanyuan Liu, Fanhua Shang, James Cheng, Hong Cheng, Licheng Jiao
In this paper, we propose an accelerated first-order method for geodesically convex optimization, which is the generalization of the standard Nesterov's accelerated method from Euclidean space to nonlinear Riemannian space. We first derive two equations and obtain two nonlinear operators for geodesically convex optimization instead of the linear extrapolation step in Euclidean space.
Accelerated First-order Methods for Geodesically Convex Optimization on Riemannian Manifolds
Yuanyuan Liu, Fanhua Shang, James Cheng, Hong Cheng, Licheng Jiao
In this paper, we propose an accelerated first-order method for geodesically convex optimization, which is the generalization of the standard Nesterov's accelerated method from Euclidean space to nonlinear Riemannian space. We first derive two equations and obtain two nonlinear operators for geodesically convex optimization instead of the linear extrapolation step in Euclidean space.