Goto

Collaborating Authors

 Jameel, Abu Shafin Mohammad Mahdee


A Racing Dataset and Baseline Model for Track Detection in Autonomous Racing

arXiv.org Artificial Intelligence

--A significant challenge in racing-related research is the lack of publicly available datasets containing raw images with corresponding annotations for the downstream task. In this paper, we introduce RoRaTrack, a novel dataset that contains annotated multi-camera image data from racing scenarios for track detection. The data is collected on a Dallara A V-21 at a racing circuit in Indiana, in collaboration with the Indy Autonomous Challenge (IAC). RoRaTrack addresses common problems such as blurriness due to high speed, color inversion from the camera, and absence of lane markings on the track. Consequently, we propose RaceGAN, a baseline model based on a Generative Adversarial Network (GAN) that effectively addresses these challenges. The proposed model demonstrates superior performance compared to current state-of-the-art machine learning models in track detection. The dataset and code for this work are available at github.com/RaceGAN. Modern vehicles are increasingly equipped with a range of computer vision technologies to assist drivers and improve road safety. A critical application of these technologies, particularly for autonomous and self-driving vehicles, is lane detection, which ensures that vehicles remain within designated lanes [1]. Lane detection systems not only help maintain proper lane alignment, but also provide visual cues to drivers about lane boundaries. Similarly, autonomous technologies are being integrated into race cars, giving rise to the emerging field of autonomous racing. In this domain, vehicles operate entirely without human intervention, relying solely on artificial intelligence and computer vision algorithms [2].


Data-Driven Subsampling in the Presence of an Adversarial Actor

arXiv.org Artificial Intelligence

Deep learning based automatic modulation classification (AMC) has received significant attention owing to its potential applications in both military and civilian use cases. Recently, data-driven subsampling techniques have been utilized to overcome the challenges associated with computational complexity and training time for AMC. Beyond these direct advantages of data-driven subsampling, these methods also have regularizing properties that may improve the adversarial robustness of the modulation classifier. In this paper, we investigate the effects of an adversarial attack on an AMC system that employs deep learning models both for AMC and for subsampling. Our analysis shows that subsampling itself is an effective deterrent to adversarial attacks. We also uncover the most efficient subsampling strategy when an adversarial attack on both the classifier and the subsampler is anticipated.


Deep OFDM Channel Estimation: Capturing Frequency Recurrence

arXiv.org Artificial Intelligence

In this paper, we propose a deep-learning-based channel estimation scheme in an orthogonal frequency division multiplexing (OFDM) system. Our proposed method, named Single Slot Recurrence Along Frequency Network (SisRafNet), is based on a novel study of recurrent models for exploiting sequential behavior of channels across frequencies. Utilizing the fact that wireless channels have a high degree of correlation across frequencies, we employ recurrent neural network techniques within a single OFDM slot, thus overcoming the latency and memory constraints typically associated with recurrence based methods. The proposed SisRafNet delivers superior estimation performance compared to existing deep-learning-based channel estimation techniques and the performance has been validated on a wide range of 3rd Generation Partnership Project (3GPP) compliant channel scenarios at multiple signal-to-noise ratios.


Improving Transferability of Network Intrusion Detection in a Federated Learning Setup

arXiv.org Artificial Intelligence

Network Intrusion Detection Systems (IDS) aim to detect the presence of an intruder by analyzing network packets arriving at an internet connected device. Data-driven deep learning systems, popular due to their superior performance compared to traditional IDS, depend on availability of high quality training data for diverse intrusion classes. A way to overcome this limitation is through transferable learning, where training for one intrusion class can lead to detection of unseen intrusion classes after deployment. In this paper, we provide a detailed study on the transferability of intrusion detection. We investigate practical federated learning configurations to enhance the transferability of intrusion detection. We propose two techniques to significantly improve the transferability of a federated intrusion detection system. The code for this work can be found at https://github.com/ghosh64/transferability.


A Study on Transferability of Deep Learning Models for Network Intrusion Detection

arXiv.org Artificial Intelligence

In this paper, we explore transferability in learning between different attack classes in a network intrusion detection setup. We evaluate transferability of attack classes by training a deep learning model with a specific attack class and testing it on a separate attack class. We observe the effects of real and synthetically generated data augmentation techniques on transferability. We investigate the nature of observed transferability relationships, which can be either symmetric or asymmetric. We also examine explainability of the transferability relationships using the recursive feature elimination algorithm. We study data preprocessing techniques to boost model performance. The code for this work can be found at https://github.com/ghosh64/transferability.


Knowledge Distillation For Wireless Edge Learning

arXiv.org Artificial Intelligence

In this paper, we propose a framework for predicting frame errors in the collaborative spectrally congested wireless environments of the DARPA Spectrum Collaboration Challenge (SC2) via a recently collected dataset. We employ distributed deep edge learning that is shared among edge nodes and a central cloud. Using this close-to-practice dataset, we find that widely used federated learning approaches, specially those that are privacy preserving, are worse than local training for a wide range of settings. We hence utilize the synthetic minority oversampling technique to maintain privacy via avoiding the transfer of local data to the cloud, and utilize knowledge distillation with an aim to benefit from high cloud computing and storage capabilities. The proposed framework achieves overall better performance than both local and federated training approaches, while being robust against catastrophic failures as well as challenging channel conditions that result in high frame error rates.