Goto

Collaborating Authors

 Jalan, Akhil


Optimal Transfer Learning for Missing Not-at-Random Matrix Completion

arXiv.org Machine Learning

We study transfer learning for matrix completion in a Missing Not-at-Random (MNAR) setting that is motivated by biological problems. The target matrix $Q$ has entire rows and columns missing, making estimation impossible without side information. To address this, we use a noisy and incomplete source matrix $P$, which relates to $Q$ via a feature shift in latent space. We consider both the active and passive sampling of rows and columns. We establish minimax lower bounds for entrywise estimation error in each setting. Our computationally efficient estimation framework achieves this lower bound for the active setting, which leverages the source data to query the most informative rows and columns of $Q$. This avoids the need for incoherence assumptions required for rate optimality in the passive sampling setting. We demonstrate the effectiveness of our approach through comparisons with existing algorithms on real-world biological datasets.


Transfer Learning for Latent Variable Network Models

arXiv.org Artificial Intelligence

We study transfer learning for estimation in latent variable network models. In our setting, the conditional edge probability matrices given the latent variables are represented by $P$ for the source and $Q$ for the target. We wish to estimate $Q$ given two kinds of data: (1) edge data from a subgraph induced by an $o(1)$ fraction of the nodes of $Q$, and (2) edge data from all of $P$. If the source $P$ has no relation to the target $Q$, the estimation error must be $\Omega(1)$. However, we show that if the latent variables are shared, then vanishing error is possible. We give an efficient algorithm that utilizes the ordering of a suitably defined graph distance. Our algorithm achieves $o(1)$ error and does not assume a parametric form on the source or target networks. Next, for the specific case of Stochastic Block Models we prove a minimax lower bound and show that a simple algorithm achieves this rate. Finally, we empirically demonstrate our algorithm's use on real-world and simulated graph transfer problems.


Strategic Contract Negotiation in Financial Networks

arXiv.org Artificial Intelligence

How can firms optimally negotiate bilateral contracts with each other in a financial network? Every firm seeks to maximize the utility it gains from its portfolio of contracts. We focus on mean-variance utilities, where each firm has its own beliefs about the expected returns of the contracts and the covariances between them (Markowitz, J. Finance 7(11), 1952). Instead of revealing these beliefs, a firm may adopt a different negotiating position, seeking better contract terms. We formulate a contract negotiation process by which such strategic behavior leads to a network of contracts. In our formulation, any subset of firms can be strategic. The negotiating positions of these firms can form Nash equilibria, where each firm's position is optimal given the others' positions. We give a polynomial-time algorithm to find the Nash equilibria, if they exist, and certify their nonexistence otherwise. We explore the implications of such equilibria on several model networks. These illustrate that firms' utilities can be sensitive to their negotiating position. We then propose trade deadlines as a mechanism to reduce the need for strategic behavior. At the deadline, each firm can unilaterally cancel some or all of its contracts, for a penalty. In our model networks, we show that trade deadlines can reduce the loss of utility from being honest. We empirically verify our insights using data on international trade between 46 large economies.