Goto

Collaborating Authors

 Jalal Fadili


A Multi-step Inertial Forward-Backward Splitting Method for Non-convex Optimization

Neural Information Processing Systems

We propose a multi-step inertial Forward-Backward splitting algorithm for minimizing the sum of two non-necessarily convex functions, one of which is proper lower semi-continuous while the other is differentiable with a Lipschitz continuous gradient. We first prove global convergence of the algorithm with the help of the Kurdyka-Łojasiewicz property. Then, when the non-smooth part is also partly smooth relative to a smooth submanifold, we establish finite identification of the latter and provide sharp local linear convergence analysis. The proposed method is illustrated on several problems arising from statistics and machine learning.


Sparse Support Recovery with Non-smooth Loss Functions

Neural Information Processing Systems

We derive a sharp condition which ensures that the support of the vector to recover is stable to small additive noise in the observations, as long as the loss constraint size is tuned proportionally to the noise level. A distinctive feature of our theory is that it also explains what happens when the support is unstable. While the support is not stable anymore, we identify an "extended support" and show that this extended support is stable to small additive noise. To exemplify the usefulness of our theory, we give a detailed numerical analysis of the support stability/instability of compressed sensing recovery with these different losses. This highlights different parameter regimes, ranging from total support stability to progressively increasing support instability.