Jaiswal, Ayush
FashionNTM: Multi-turn Fashion Image Retrieval via Cascaded Memory
Pal, Anwesan, Wadhwa, Sahil, Jaiswal, Ayush, Zhang, Xu, Wu, Yue, Chada, Rakesh, Natarajan, Pradeep, Christensen, Henrik I.
Multi-turn textual feedback-based fashion image retrieval focuses on a real-world setting, where users can iteratively provide information to refine retrieval results until they find an item that fits all their requirements. In this work, we present a novel memory-based method, called FashionNTM, for such a multi-turn system. Our framework incorporates a new Cascaded Memory Neural Turing Machine (CM-NTM) approach for implicit state management, thereby learning to integrate information across all past turns to retrieve new images, for a given turn. Unlike vanilla Neural Turing Machine (NTM), our CM-NTM operates on multiple inputs, which interact with their respective memories via individual read and write heads, to learn complex relationships. Extensive evaluation results show that our proposed method outperforms the previous state-of-the-art algorithm by 50.5%, on Multi-turn FashionIQ -- the only existing multi-turn fashion dataset currently, in addition to having a relative improvement of 12.6% on Multi-turn Shoes -- an extension of the single-turn Shoes dataset that we created in this work. Further analysis of the model in a real-world interactive setting demonstrates two important capabilities of our model -- memory retention across turns, and agnosticity to turn order for non-contradictory feedback. Finally, user study results show that images retrieved by FashionNTM were favored by 83.1% over other multi-turn models. Project page: https://sites.google.com/eng.ucsd.edu/fashionntm
Class-agnostic Object Detection
Jaiswal, Ayush, Wu, Yue, Natarajan, Pradeep, Natarajan, Premkumar
Object detection models perform well at localizing and classifying objects that they are shown during training. However, due to the difficulty and cost associated with creating and annotating detection datasets, trained models detect a limited number of object types with unknown objects treated as background content. This hinders the adoption of conventional detectors in real-world applications like large-scale object matching, visual grounding, visual relation prediction, obstacle detection (where it is more important to determine the presence and location of objects than to find specific types), etc. We propose class-agnostic object detection as a new problem that focuses on detecting objects irrespective of their object-classes. Specifically, the goal is to predict bounding boxes for all objects in an image but not their object-classes. The predicted boxes can then be consumed by another system to perform application-specific classification, retrieval, etc. We propose training and evaluation protocols for benchmarking class-agnostic detectors to advance future research in this domain. Finally, we propose (1) baseline methods and (2) a new adversarial learning framework for class-agnostic detection that forces the model to exclude class-specific information from features used for predictions. Experimental results show that adversarial learning improves class-agnostic detection efficacy.
MEG: Multi-Evidence GNN for Multimodal Semantic Forensics
Sabir, Ekraam, Jaiswal, Ayush, AbdAlmageed, Wael, Natarajan, Prem
Fake news often involves semantic manipulations across modalities such as image, text, location etc and requires the development of multimodal semantic forensics for its detection. Recent research has centered the problem around images, calling it image repurposing -- where a digitally unmanipulated image is semantically misrepresented by means of its accompanying multimodal metadata such as captions, location, etc. The image and metadata together comprise a multimedia package. The problem setup requires algorithms to perform multimodal semantic forensics to authenticate a query multimedia package using a reference dataset of potentially related packages as evidences. Existing methods are limited to using a single evidence (retrieved package), which ignores potential performance improvement from the use of multiple evidences. In this work, we introduce a novel graph neural network based model for multimodal semantic forensics, which effectively utilizes multiple retrieved packages as evidences and is scalable with the number of evidences. We compare the scalability and performance of our model against existing methods. Experimental results show that the proposed model outperforms existing state-of-the-art algorithms with an error reduction of up to 25%.
Unified Adversarial Invariance
Jaiswal, Ayush, Wu, Yue, AbdAlmageed, Wael, Natarajan, Premkumar
We present a unified invariance framework for supervised neural networks that can induce independence to nuisance factors of data without using any nuisance annotations, but can additionally use labeled information about biasing factors to force their removal from the latent embedding for making fair predictions. Invariance to nuisance is achieved by learning a split representation of data through competitive training between the prediction task and a reconstruction task coupled with disentanglement, whereas that to biasing factors is brought about by penalizing the network if the latent embedding contains any information about them. We describe an adversarial instantiation of this framework and provide analysis of its working. Our model outperforms previous works at inducing invariance to nuisance factors without using any labeled information about such variables, and achieves state-of-the-art performance at learning independence to biasing factors in fairness settings.
Unsupervised Adversarial Invariance
Jaiswal, Ayush, Wu, Rex Yue, Abd-Almageed, Wael, Natarajan, Prem
Data representations that contain all the information about target variables but are invariant to nuisance factors benefit supervised learning algorithms by preventing them from learning associations between these factors and the targets, thus reducing overfitting. We present a novel unsupervised invariance induction framework for neural networks that learns a split representation of data through competitive training between the prediction task and a reconstruction task coupled with disentanglement, without needing any labeled information about nuisance factors or domain knowledge. We describe an adversarial instantiation of this framework and provide analysis of its working. Our unsupervised model outperforms state-of-the-art methods, which are supervised, at inducing invariance to inherent nuisance factors, effectively using synthetic data augmentation to learn invariance, and domain adaptation. Our method can be applied to any prediction task, eg., binary/multi-class classification or regression, without loss of generality.
Unsupervised Adversarial Invariance
Jaiswal, Ayush, Wu, Rex Yue, Abd-Almageed, Wael, Natarajan, Prem
Data representations that contain all the information about target variables but are invariant to nuisance factors benefit supervised learning algorithms by preventing them from learning associations between these factors and the targets, thus reducing overfitting. We present a novel unsupervised invariance induction framework for neural networks that learns a split representation of data through competitive training between the prediction task and a reconstruction task coupled with disentanglement, without needing any labeled information about nuisance factors or domain knowledge. We describe an adversarial instantiation of this framework and provide analysis of its working. Our unsupervised model outperforms state-of-the-art methods, which are supervised, at inducing invariance to inherent nuisance factors, effectively using synthetic data augmentation to learn invariance, and domain adaptation. Our method can be applied to any prediction task, eg., binary/multi-class classification or regression, without loss of generality.
Unsupervised Adversarial Invariance
Jaiswal, Ayush, Wu, Yue, AbdAlmageed, Wael, Natarajan, Premkumar
Data representations that contain all the information about target variables but are invariant to nuisance factors benefit supervised learning algorithms by preventing them from learning associations between these factors and the targets, thus reducing overfitting. We present a novel unsupervised invariance induction framework for neural networks that learns a split representation of data through competitive training between the prediction task and a reconstruction task coupled with disentanglement, without needing any labeled information about nuisance factors or domain knowledge. We describe an adversarial instantiation of this framework and provide analysis of its working. Our unsupervised model outperforms state-of-the-art methods, which are supervised, at inducing invariance to inherent nuisance factors, effectively using synthetic data augmentation to learn invariance, and domain adaptation. Our method can be applied to any prediction task, eg., binary/multi-class classification or regression, without loss of generality.
Multimedia Semantic Integrity Assessment Using Joint Embedding Of Images And Text
Jaiswal, Ayush, Sabir, Ekraam, AbdAlmageed, Wael, Natarajan, Premkumar
Real world multimedia data is often composed of multiple modalities such as an image or a video with associated text (e.g. captions, user comments, etc.) and metadata. Such multimodal data packages are prone to manipulations, where a subset of these modalities can be altered to misrepresent or repurpose data packages, with possible malicious intent. It is, therefore, important to develop methods to assess or verify the integrity of these multimedia packages. Using computer vision and natural language processing methods to directly compare the image (or video) and the associated caption to verify the integrity of a media package is only possible for a limited set of objects and scenes. In this paper, we present a novel deep learning-based approach for assessing the semantic integrity of multimedia packages containing images and captions, using a reference set of multimedia packages. We construct a joint embedding of images and captions with deep multimodal representation learning on the reference dataset in a framework that also provides image-caption consistency scores (ICCSs). The integrity of query media packages is assessed as the inlierness of the query ICCSs with respect to the reference dataset. We present the MultimodAl Information Manipulation dataset (MAIM), a new dataset of media packages from Flickr, which we make available to the research community. We use both the newly created dataset as well as Flickr30K and MS COCO datasets to quantitatively evaluate our proposed approach. The reference dataset does not contain unmanipulated versions of tampered query packages. Our method is able to achieve F1 scores of 0.75, 0.89 and 0.94 on MAIM, Flickr30K and MS COCO, respectively, for detecting semantically incoherent media packages.
Large-Scale Unsupervised Deep Representation Learning for Brain Structure
Jaiswal, Ayush, Guo, Dong, Raghavendra, Cauligi S., Thompson, Paul
Machine Learning (ML) is increasingly being used for computer aided diagnosis of brain related disorders based on structural magnetic resonance imaging (MRI) data. Most of such work employs biologically and medically meaningful hand-crafted features calculated from different regions of the brain. The construction of such highly specialized features requires a considerable amount of time, manual oversight and careful quality control to ensure the absence of errors in the computational process. Recent advances in Deep Representation Learning have shown great promise in extracting highly non-linear and information-rich features from data. In this paper, we present a novel large-scale deep unsupervised approach to learn generic feature representations of structural brain MRI scans, which requires no specialized domain knowledge or manual intervention. Our method produces low-dimensional representations of brain structure, which can be used to reconstruct brain images with very low error and exhibit performance comparable to FreeSurfer features on various classification tasks.
Bidirectional Conditional Generative Adversarial Networks
Jaiswal, Ayush, AbdAlmageed, Wael, Wu, Yue, Natarajan, Premkumar
Conditional Generative Adversarial Networks (cGANs) are generative models that can produce data samples ($x$) conditioned on both latent variables ($z$) and known auxiliary information ($c$). We propose the Bidirectional cGAN (BiCoGAN), which effectively disentangles $z$ and $c$ in the generation process and provides an encoder that learns inverse mappings from $x$ to both $z$ and $c$, trained jointly with the generator and the discriminator. We present crucial techniques for training BiCoGANs, which involve an extrinsic factor loss along with an associated dynamically-tuned importance weight. As compared to other encoder-based cGANs, BiCoGANs encode $c$ more accurately, and utilize $z$ and $c$ more effectively and in a more disentangled way to generate samples.