Goto

Collaborating Authors

 Jain, Kunal


Compact Neural TTS Voices for Accessibility

arXiv.org Artificial Intelligence

Contemporary text-to-speech solutions for accessibility applications can typically be classified into two categories: (i) device-based statistical parametric speech synthesis (SPSS) or unit selection (USEL) and (ii) cloud-based neural TTS. SPSS and USEL offer low latency and low disk footprint at the expense of naturalness and audio quality. Cloud-based neural TTS systems provide significantly better audio quality and naturalness but regress in terms of latency and responsiveness, rendering these impractical for real-world applications. More recently, neural TTS models were made deployable to run on handheld devices. Nevertheless, latency remains higher than SPSS and USEL, while disk footprint prohibits pre-installation for multiple voices at once. In this work, we describe a high-quality compact neural TTS system achieving latency on the order of 15 ms with low disk footprint. The proposed solution is capable of running on low-power devices.


Ensuring Fair LLM Serving Amid Diverse Applications

arXiv.org Artificial Intelligence

In a multi-tenant large language model (LLM) serving platform hosting diverse applications, some users may submit an excessive number of requests, causing the service to become unavailable to other users and creating unfairness. Existing fairness approaches do not account for variations in token lengths across applications and multiple LLM calls, making them unsuitable for such platforms. To address the fairness challenge, this paper analyzes millions of requests from thousands of users on MS CoPilot, a real-world multi-tenant LLM platform hosted by Microsoft. Our analysis confirms the inadequacy of existing methods and guides the development of FairServe, a system that ensures fair LLM access across diverse applications. FairServe proposes application-characteristic aware request throttling coupled with a weighted service counter based scheduling technique to curb abusive behavior and ensure fairness. Our experimental results on real-world traces demonstrate FairServe's superior performance compared to the state-of-the-art method in ensuring fairness. We are actively working on deploying our system in production, expecting to benefit millions of customers world-wide.


Bayesian Optimization for Function Compositions with Applications to Dynamic Pricing

arXiv.org Artificial Intelligence

Bayesian Optimization (BO) is used to find the global optima of black box functions. In this work, we propose a practical BO method of function compositions where the form of the composition is known but the constituent functions are expensive to evaluate. By assuming an independent Gaussian process (GP) model for each of the constituent black-box function, we propose Expected Improvement (EI) and Upper Confidence Bound (UCB) based BO algorithms and demonstrate their ability to outperform not just vanilla BO but also the current state-of-art algorithms. We demonstrate a novel application of the proposed methods to dynamic pricing in revenue management when the underlying demand function is expensive to evaluate.