Goto

Collaborating Authors

 Jain, Deepali


Robotic Table Tennis: A Case Study into a High Speed Learning System

arXiv.org Artificial Intelligence

We present a deep-dive into a real-world robotic learning system that, in previous work, was shown to be capable of hundreds of table tennis rallies with a human and has the ability to precisely return the ball to desired targets. This system puts together a highly optimized perception subsystem, a high-speed low-latency robot controller, a simulation paradigm that can prevent damage in the real world and also train policies for zero-shot transfer, and automated real world environment resets that enable autonomous training and evaluation on physical robots. We complement a complete system description, including numerous design decisions that are typically not widely disseminated, with a collection of studies that clarify the importance of mitigating various sources of latency, accounting for training and deployment distribution shifts, robustness of the perception system, sensitivity to policy hyper-parameters, and choice of action space. A video demonstrating the components of the system and details of experimental results can be found at https://youtu.be/uFcnWjB42I0.


Mnemosyne: Learning to Train Transformers with Transformers

arXiv.org Artificial Intelligence

In this work, we propose a new class of learnable optimizers, called \textit{Mnemosyne}. It is based on the novel spatio-temporal low-rank implicit attention Transformers that can learn to train entire neural network architectures, including other Transformers, without any task-specific optimizer tuning. We show that Mnemosyne: (a) outperforms popular LSTM optimizers (also with new feature engineering to mitigate catastrophic forgetting of LSTMs), (b) can successfully train Transformers while using simple meta-training strategies that require minimal computational resources, (c) matches accuracy-wise SOTA hand-designed optimizers with carefully tuned hyper-parameters (often producing top performing models). Furthermore, Mnemosyne provides space complexity comparable to that of its hand-designed first-order counterparts, which allows it to scale to training larger sets of parameters. We conduct an extensive empirical evaluation of Mnemosyne on: (a) fine-tuning a wide range of Vision Transformers (ViTs) from medium-size architectures to massive ViT-Hs (36 layers, 16 heads), (b) pre-training BERT models and (c) soft prompt-tuning large 11B+ T5XXL models. We complement our results with a comprehensive theoretical analysis of the compact associative memory used by Mnemosyne which we believe was never done before.


Barkour: Benchmarking Animal-level Agility with Quadruped Robots

arXiv.org Artificial Intelligence

Abstract--Animals have evolved various agile locomotion strategies, such as sprinting, leaping, and jumping. There is a growing interest in developing legged robots that move like their biological counterparts and show various agile skills to navigate complex environments quickly. Despite the interest, the field lacks systematic benchmarks to measure the performance of control policies and hardware in agility. We introduce the Barkour benchmark, an obstacle course to quantify agility for legged robots. Inspired by dog agility competitions, it consists of diverse obstacles and a time based scoring mechanism. This encourages researchers to develop controllers that not only move fast, but do so in a controllable and versatile way. To set strong baselines, we present two methods for tackling the benchmark. In the first approach, we train specialist locomotion skills using on-policy reinforcement learning methods and combine them with a highlevel navigation controller. In the second approach, we distill the specialist skills into a Transformer-based generalist locomotion policy, named Locomotion-Transformer, that can handle various terrains and adjust the robot's gait based on the perceived There has been a proliferation of legged robot development inspired by animal mobility. An important research question in this field is how to develop a controller that enables legged robots to exhibit animal-level agility while also being able to generalize environments, such as up and down stairs, through bushes, across various obstacles and terrains. Through the exploration and over unpaved roads and rocky or even sandy beaches. of both learning and traditional control-based methods, there Despite advances in robot hardware and control, a major has been significant progress in enabling robots to walk across challenge in the field is the lack of standardized and intuitive a wide range of terrains [10, 21, 20, 1, 27]. These robots are methods for evaluating the effectiveness of locomotion now capable of walking in a variety of indoor and outdoor controllers.


ES-ENAS: Efficient Evolutionary Optimization for Large Hybrid Search Spaces

arXiv.org Artificial Intelligence

In this paper, we approach the problem of optimizing blackbox functions over large hybrid search spaces consisting of both combinatorial and continuous parameters. We demonstrate that previous evolutionary algorithms which rely on mutation-based approaches, while flexible over combinatorial spaces, suffer from a curse of dimensionality in high dimensional continuous spaces both theoretically and empirically, which thus limits their scope over hybrid search spaces as well. In order to combat this curse, we propose ES-ENAS, a simple and modular joint optimization procedure combining the class of sample-efficient smoothed gradient techniques, commonly known as Evolutionary Strategies (ES), with combinatorial optimizers in a highly scalable and intuitive way, inspired by the one-shot or supernet paradigm introduced in Efficient Neural Architecture Search (ENAS). By doing so, we achieve significantly more sample efficiency, which we empirically demonstrate over synthetic benchmarks, and are further able to apply ES-ENAS for architecture search over popular RL benchmarks.


i-Sim2Real: Reinforcement Learning of Robotic Policies in Tight Human-Robot Interaction Loops

arXiv.org Artificial Intelligence

Sim-to-real transfer is a powerful paradigm for robotic reinforcement learning. The ability to train policies in simulation enables safe exploration and large-scale data collection quickly at low cost. However, prior works in sim-to-real transfer of robotic policies typically do not involve any human-robot interaction because accurately simulating human behavior is an open problem. In this work, our goal is to leverage the power of simulation to train robotic policies that are proficient at interacting with humans upon deployment. But there is a chicken and egg problem -- how to gather examples of a human interacting with a physical robot so as to model human behavior in simulation without already having a robot that is able to interact with a human? Our proposed method, Iterative-Sim-to-Real (i-S2R), attempts to address this. i-S2R bootstraps from a simple model of human behavior and alternates between training in simulation and deploying in the real world. In each iteration, both the human behavior model and the policy are refined. For all training we apply a new evolutionary search algorithm called Blackbox Gradient Sensing (BGS). We evaluate our method on a real world robotic table tennis setting, where the objective for the robot is to play cooperatively with a human player for as long as possible. Table tennis is a high-speed, dynamic task that requires the two players to react quickly to each other's moves, making for a challenging test bed for research on human-robot interaction. We present results on an industrial robotic arm that is able to cooperatively play table tennis with human players, achieving rallies of 22 successive hits on average and 150 at best. Further, for 80% of players, rally lengths are 70% to 175% longer compared to the sim-to-real plus fine-tuning (S2R+FT) baseline. For videos of our system in action, please see https://sites.google.com/view/is2r.


Hybrid Random Features

arXiv.org Machine Learning

We propose a new class of random feature methods for linearizing softmax and Gaussian kernels called hybrid random features (HRFs) that automatically adapt the quality of kernel estimation to provide most accurate approximation in the defined regions of interest. Special instantiations of HRFs lead to well-known methods such as trigonometric (Rahimi and Recht, 2007) or (recently introduced in the context of linear-attention Transformers) positive random features (Choromanski et al., 2021). By generalizing Bochner's Theorem for softmax/Gaussian kernels and leveraging random features for compositional kernels, the HRF-mechanism provides strong theoretical guarantees - unbiased approximation and strictly smaller worst-case relative errors than its counterparts. We conduct exhaustive empirical evaluation of HRF ranging from pointwise kernel estimation experiments, through tests on data admitting clustering structure to benchmarking implicit-attention Transformers (also for downstream Robotics applications), demonstrating its quality in a wide spectrum of machine learning problems.


Unlocking Pixels for Reinforcement Learning via Implicit Attention

arXiv.org Artificial Intelligence

There has recently been significant interest in training reinforcement learning (RL) agents in vision-based environments. This poses many challenges, such as high dimensionality and potential for observational overfitting through spurious correlations. A promising approach to solve both of these problems is a self-attention bottleneck, which provides a simple and effective framework for learning high performing policies, even in the presence of distractions. However, due to poor scalability of attention architectures, these methods do not scale beyond low resolution visual inputs, using large patches (thus small attention matrices). In this paper we make use of new efficient attention algorithms, recently shown to be highly effective for Transformers, and demonstrate that these new techniques can be applied in the RL setting. This allows our attention-based controllers to scale to larger visual inputs, and facilitate the use of smaller patches, even individual pixels, improving generalization. In addition, we propose a new efficient algorithm approximating softmax attention with what we call hybrid random features, leveraging the theory of angular kernels. We show theoretically and empirically that hybrid random features is a promising approach when using attention for vision-based RL.


Disentangled Planning and Control in Vision Based Robotics via Reward Machines

arXiv.org Artificial Intelligence

In this work we augment a Deep Q-Learning agent with a Reward Machine (DQRM) to increase speed of learning vision-based policies for robot tasks, and overcome some of the limitations of DQN that prevent it from converging to good-quality policies. A reward machine (RM) is a finite state machine that decomposes a task into a discrete planning graph and equips the agent with a reward function to guide it toward task completion. The reward machine can be used for both reward shaping, and informing the policy what abstract state it is currently at. An abstract state is a high level simplification of the current state, defined in terms of task relevant features. These two supervisory signals of reward shaping and knowledge of current abstract state coming from the reward machine complement each other and can both be used to improve policy performance as demonstrated on several vision based robotic pick and place tasks. Particularly for vision based robotics applications, it is often easier to build a reward machine than to try and get a policy to learn the task without this structure.


Surveys without Questions: A Reinforcement Learning Approach

arXiv.org Artificial Intelligence

The 'old world' instrument, survey, remains a tool of choice for firms to obtain ratings of satisfaction and experience that customers realize while interacting online with firms. While avenues for survey have evolved from emails and links to pop-ups while browsing, the deficiencies persist. These include - reliance on ratings of very few respondents to infer about all customers' online interactions; failing to capture a customer's interactions over time since the rating is a one-time snapshot; and inability to tie back customers' ratings to specific interactions because ratings provided relate to all interactions. To overcome these deficiencies we extract proxy ratings from clickstream data, typically collected for every customer's online interactions, by developing an approach based on Reinforcement Learning (RL). We introduce a new way to interpret values generated by the value function of RL, as proxy ratings. Our approach does not need any survey data for training. Yet, on validation against actual survey data, proxy ratings yield reasonable performance results. Additionally, we offer a new way to draw insights from values of the value function, which allow associating specific interactions to their proxy ratings. We introduce two new metrics to represent ratings - one, customer-level and the other, aggregate-level for click actions across customers. Both are defined around proportion of all pairwise, successive actions that show increase in proxy ratings. This intuitive customer-level metric enables gauging the dynamics of ratings over time and is a better predictor of purchase than customer ratings from survey. The aggregate-level metric allows pinpointing actions that help or hurt experience. In sum, proxy ratings computed unobtrusively from clickstream, for every action, for each customer, and for every session can offer interpretable and more insightful alternative to surveys.


Reinforcement Learning with Chromatic Networks

arXiv.org Artificial Intelligence

We present a new algorithm for finding compact neural networks encoding reinforcement learning (RL) policies. To do it, we leverage in the novel RL setting the theory of pointer networks and ENAS-type algorithms for combinatorial optimization of RL policies as well as recent evolution strategies (ES) optimization methods, and propose to define the combinatorial search space to be the the set of different edge-partitionings (colorings) into same-weight classes. For several RL tasks, we manage to learn colorings translating to effective policies parameterized by as few as 17 weight parameters, providing 6x compression over state-of-the-art compact policies based on Toeplitz matrices. We believe that our work is one of the first attempts to propose a rigorous approach to training structured neural network architectures for RL problems that are of interest especially in mobile robotics with limited storage and computational resources.