Jain, Arpit
iPAL: A Machine Learning Based Smart Healthcare Framework For Automatic Diagnosis Of Attention Deficit/Hyperactivity Disorder (ADHD)
Sharma, Abhishek, Jain, Arpit, Sharma, Shubhangi, Gupta, Ashutosh, Jain, Prateek, Mohanty, Saraju P.
ADHD is a prevalent disorder among the younger population. Standard evaluation techniques currently use evaluation forms, interviews with the patient, and more. However, its symptoms are similar to those of many other disorders like depression, conduct disorder, and oppositional defiant disorder, and these current diagnosis techniques are not very effective. Thus, a sophisticated computing model holds the potential to provide a promising diagnosis solution to this problem. This work attempts to explore methods to diagnose ADHD using combinations of multiple established machine learning techniques like neural networks and SVM models on the ADHD200 dataset and explore the field of neuroscience. In this work, multiclass classification is performed on phenotypic data using an SVM model. The better results have been analyzed on the phenotypic data compared to other supervised learning techniques like Logistic regression, KNN, AdaBoost, etc. In addition, neural networks have been implemented on functional connectivity from the MRI data of a sample of 40 subjects provided to achieve high accuracy without prior knowledge of neuroscience. It is combined with the phenotypic classifier using the ensemble technique to get a binary classifier. It is further trained and tested on 400 out of 824 subjects from the ADHD200 data set and achieved an accuracy of 92.5% for binary classification The training and testing accuracy has been achieved upto 99% using ensemble classifier.
Learning from Synthetic Data: Addressing Domain Shift for Semantic Segmentation
Sankaranarayanan, Swami, Balaji, Yogesh, Jain, Arpit, Lim, Ser Nam, Chellappa, Rama
Visual Domain Adaptation is a problem of immense importance in computer vision. Previous approaches showcase the inability of even deep neural networks to learn informative representations across domain shift. This problem is more severe for tasks where acquiring hand labeled data is extremely hard and tedious. In this work, we focus on adapting the representations learned by segmentation networks across synthetic and real domains. Contrary to previous approaches that use a simple adversarial objective or superpixel information to aid the process, we propose an approach based on Generative Adversarial Networks (GANs) that brings the embeddings closer in the learned feature space. To showcase the generality and scalability of our approach, we show that we can achieve state of the art results on two challenging scenarios of synthetic to real domain adaptation. Additional exploratory experiments show that our approach: (1) generalizes to unseen domains and (2) results in improved alignment of source and target distributions.
Regularizing Deep Networks Using Efficient Layerwise Adversarial Training
Sankaranarayanan, Swami (University of Maryland, College Park) | Jain, Arpit (GE Global Research) | Chellappa, Rama (University of Maryland, College Park) | Lim, Ser Nam (Avitas Systems, GE Global Research)
Adversarial training has been shown to regularize deep neural networks in addition to increasing their robustness to adversarial examples. However, the regularization effect on very deep state of the art networks has not been fully investigated. In this paper, we present a novel approach to regularize deep neural networks by perturbing intermediate layer activations in an efficient manner. We use these perturbations to train very deep models such as ResNets and WideResNets and show improvement in performance across datasets of different sizes such as CIFAR-10, CIFAR-100 and ImageNet. Our ablative experiments show that the proposed approach not only provides stronger regularization compared to Dropout but also improves adversarial robustness comparable to traditional adversarial training approaches.
Regularizing deep networks using efficient layerwise adversarial training
Sankaranarayanan, Swami, Jain, Arpit, Chellappa, Rama, Lim, Ser Nam
Adversarial training has been shown to regularize deep neural networks in addition to increasing their robustness to adversarial examples. However, its impact on very deep state of the art networks has not been fully investigated. In this paper, we present an efficient approach to perform adversarial training by perturbing intermediate layer activations and study the use of such perturbations as a regularizer during training. We use these perturbations to train very deep models such as ResNets and show improvement in performance both on adversarial and original test data. Our experiments highlight the benefits of perturbing intermediate layer activations compared to perturbing only the inputs. The results on CIFAR-10 and CIFAR-100 datasets show the merits of the proposed adversarial training approach. Additional results on WideResNets show that our approach provides significant improvement in classification accuracy for a given base model, outperforming dropout and other base models of larger size.