Goto

Collaborating Authors

 Jain, Akshat


Feature Fusion Attention Network with CycleGAN for Image Dehazing, De-Snowing and De-Raining

arXiv.org Artificial Intelligence

--This paper presents a novel approach to image dehazing by combining Feature Fusion Attention (FF A) networks with CycleGAN architecture. Our method leverages both supervised and unsupervised learning techniques to effectively remove haze from images while preserving crucial image details. The proposed hybrid architecture demonstrates significant improvements in image quality metrics, achieving superior PSNR and SSIM scores compared to traditional dehazing methods. Through extensive experimentation on the RESIDE and Dense-Haze CVPR 2019 dataset, we show that our approach effectively handles both synthetic and real-world hazy images. CycleGAN handles the unpaired nature of hazy and clean images effectively, enabling the model to learn mappings even without paired data.


Audiopedia: Audio QA with Knowledge

arXiv.org Artificial Intelligence

In this paper, we introduce Audiopedia, a novel task called Audio Question Answering with Knowledge, which requires both audio comprehension and external knowledge reasoning. Unlike traditional Audio Question Answering (AQA) benchmarks that focus on simple queries answerable from audio alone, Audiopedia targets knowledge-intensive questions. We define three sub-tasks: (i) Single Audio Question Answering (s-AQA), where questions are answered based on a single audio sample, (ii) Multi-Audio Question Answering (m-AQA), which requires reasoning over multiple audio samples, and (iii) Retrieval-Augmented Audio Question Answering (r-AQA), which involves retrieving relevant audio to answer the question. We benchmark large audio language models (LALMs) on these sub-tasks and observe suboptimal performance. To address this, we propose a generic framework that can be adapted to any LALM, equipping them with knowledge reasoning capabilities. Our framework has two components: (i) Audio Entity Linking (AEL) and (ii) Knowledge-Augmented Audio Large Multimodal Model (KA2LM), which together improve performance on knowledge-intensive AQA tasks. To our knowledge, this is the first work to address advanced audio understanding via knowledge-intensive tasks like Audiopedia.