Jaillet, Patrick
Use Your INSTINCT: INSTruction optimization usIng Neural bandits Coupled with Transformers
Lin, Xiaoqiang, Wu, Zhaoxuan, Dai, Zhongxiang, Hu, Wenyang, Shu, Yao, Ng, See-Kiong, Jaillet, Patrick, Low, Bryan Kian Hsiang
Large language models (LLMs) have shown remarkable instruction-following capabilities and achieved impressive performances in various applications. However, the performances of LLMs depend heavily on the instructions given to them, which are typically manually tuned with substantial human efforts. Recent work has used the query-efficient Bayesian optimization (BO) algorithm to automatically optimize the instructions given to black-box LLMs. However, BO usually falls short when optimizing highly sophisticated (e.g., high-dimensional) objective functions, such as the functions mapping an instruction to the performance of an LLM. This is mainly due to the limited expressive power of the Gaussian process (GP) model which is used by BO as a surrogate to model the objective function. Meanwhile, it has been repeatedly shown that neural networks (NNs), especially pre-trained transformers, possess strong expressive power and can model highly complex functions. So, we adopt a neural bandit algorithm which replaces the GP in BO by an NN surrogate to optimize instructions for black-box LLMs. More importantly, the neural bandit algorithm allows us to naturally couple the NN surrogate with the hidden representation learned by a pre-trained transformer (i.e., an open-source LLM), which significantly boosts its performance. These motivate us to propose our INSTruction optimization usIng Neural bandits Coupled with Transformers} (INSTINCT) algorithm. We perform instruction optimization for ChatGPT and use extensive experiments to show that our INSTINCT consistently outperforms the existing methods in different tasks, such as in various instruction induction tasks and the task of improving the zero-shot chain-of-thought instruction.
DRCFS: Doubly Robust Causal Feature Selection
Quinzan, Francesco, Soleymani, Ashkan, Jaillet, Patrick, Rojas, Cristian R., Bauer, Stefan
Knowing the features of a complex system that are highly relevant to a particular target variable is of fundamental interest in many areas of science. Existing approaches are often limited to linear settings, sometimes lack guarantees, and in most cases, do not scale to the problem at hand, in particular to images. We propose DRCFS, a doubly robust feature selection method for identifying the causal features even in nonlinear and high dimensional settings. We provide theoretical guarantees, illustrate necessary conditions for our assumptions, and perform extensive experiments across a wide range of simulated and semi-synthetic datasets. DRCFS significantly outperforms existing state-of-the-art methods, selecting robust features even in challenging highly non-linear and high-dimensional problems.
Online Resource Allocation with Convex-set Machine-Learned Advice
Golrezaei, Negin, Jaillet, Patrick, Zhou, Zijie
Decision-makers often have access to a machine-learned prediction about demand, referred to as advice, which can potentially be utilized in online decision-making processes for resource allocation. However, exploiting such advice poses challenges due to its potential inaccuracy. To address this issue, we propose a framework that enhances online resource allocation decisions with potentially unreliable machine-learned (ML) advice. We assume here that this advice is represented by a general convex uncertainty set for the demand vector. We introduce a parameterized class of Pareto optimal online resource allocation algorithms that strike a balance between consistent and robust ratios. The consistent ratio measures the algorithm's performance (compared to the optimal hindsight solution) when the ML advice is accurate, while the robust ratio captures performance under an adversarial demand process when the advice is inaccurate. Specifically, in a C-Pareto optimal setting, we maximize the robust ratio while ensuring that the consistent ratio is at least C. Our proposed C-Pareto optimal algorithm is an adaptive protection level algorithm, which extends the classical fixed protection level algorithm introduced in Littlewood (2005) and Ball and Queyranne (2009). Solving a complex non-convex continuous optimization problem characterizes the adaptive protection level algorithm. To complement our algorithms, we present a simple method for computing the maximum achievable consistent ratio, which serves as an estimate for the maximum value of the ML advice. Additionally, we present numerical studies to evaluate the performance of our algorithm in comparison to benchmark algorithms. The results demonstrate that by adjusting the parameter C, our algorithms effectively strike a balance between worst-case and average performance, outperforming the benchmark algorithms.
Memory-Constrained Algorithms for Convex Optimization via Recursive Cutting-Planes
Blanchard, Moรฏse, Zhang, Junhui, Jaillet, Patrick
We propose a family of recursive cutting-plane algorithms to solve feasibility problems with constrained memory, which can also be used for first-order convex optimization. Precisely, in order to find a point within a ball of radius $\epsilon$ with a separation oracle in dimension $d$ -- or to minimize $1$-Lipschitz convex functions to accuracy $\epsilon$ over the unit ball -- our algorithms use $\mathcal O(\frac{d^2}{p}\ln \frac{1}{\epsilon})$ bits of memory, and make $\mathcal O((C\frac{d}{p}\ln \frac{1}{\epsilon})^p)$ oracle calls, for some universal constant $C \geq 1$. The family is parametrized by $p\in[d]$ and provides an oracle-complexity/memory trade-off in the sub-polynomial regime $\ln\frac{1}{\epsilon}\gg\ln d$. While several works gave lower-bound trade-offs (impossibility results) -- we explicit here their dependence with $\ln\frac{1}{\epsilon}$, showing that these also hold in any sub-polynomial regime -- to the best of our knowledge this is the first class of algorithms that provides a positive trade-off between gradient descent and cutting-plane methods in any regime with $\epsilon\leq 1/\sqrt d$. The algorithms divide the $d$ variables into $p$ blocks and optimize over blocks sequentially, with approximate separation vectors constructed using a variant of Vaidya's method. In the regime $\epsilon \leq d^{-\Omega(d)}$, our algorithm with $p=d$ achieves the information-theoretic optimal memory usage and improves the oracle-complexity of gradient descent.
Multi-channel Autobidding with Budget and ROI Constraints
Deng, Yuan, Golrezaei, Negin, Jaillet, Patrick, Liang, Jason Cheuk Nam, Mirrokni, Vahab
In digital online advertising, advertisers procure ad impressions simultaneously on multiple platforms, or so-called channels, such as Google Ads, Meta Ads Manager, etc., each of which consists of numerous ad auctions. We study how an advertiser maximizes total conversion (e.g. ad clicks) while satisfying aggregate return-on-investment (ROI) and budget constraints across all channels. In practice, an advertiser does not have control over, and thus cannot globally optimize, which individual ad auctions she participates in for each channel, and instead authorizes a channel to procure impressions on her behalf: the advertiser can only utilize two levers on each channel, namely setting a per-channel budget and per-channel target ROI. In this work, we first analyze the effectiveness of each of these levers for solving the advertiser's global multi-channel problem. We show that when an advertiser only optimizes over per-channel ROIs, her total conversion can be arbitrarily worse than what she could have obtained in the global problem. Further, we show that the advertiser can achieve the global optimal conversion when she only optimizes over per-channel budgets. In light of this finding, under a bandit feedback setting that mimics real-world scenarios where advertisers have limited information on ad auctions in each channels and how channels procure ads, we present an efficient learning algorithm that produces per-channel budgets whose resulting conversion approximates that of the global optimal problem. Finally, we argue that all our results hold for both single-item and multi-item auctions from which channels procure impressions on advertisers' behalf.
Adversarial Rewards in Universal Learning for Contextual Bandits
Blanchard, Moise, Hanneke, Steve, Jaillet, Patrick
We study the fundamental limits of learning in contextual bandits, where a learner's rewards depend on their actions and a known context, which extends the canonical multi-armed bandit to the case where side-information is available. We are interested in universally consistent algorithms, which achieve sublinear regret compared to any measurable fixed policy, without any function class restriction. For stationary contextual bandits, when the underlying reward mechanism is time-invariant, Blanchard et. al (2022) characterized learnable context processes for which universal consistency is achievable; and further gave algorithms ensuring universal consistency whenever this is achievable, a property known as optimistic universal consistency. It is well understood, however, that reward mechanisms can evolve over time, possibly adversarially, and depending on the learner's actions. We show that optimistic universal learning for contextual bandits with adversarial rewards is impossible in general, contrary to all previously studied settings in online learning -- including standard supervised learning. We also give necessary and sufficient conditions for universal learning under various adversarial reward models, and an exact characterization for online rewards. In particular, the set of learnable processes for these reward models is still extremely general -- larger than i.i.d., stationary or ergodic -- but in general strictly smaller than that for supervised learning or stationary contextual bandits, shedding light on new adversarial phenomena.
Universal Regression with Adversarial Responses
Blanchard, Moรฏse, Jaillet, Patrick
We provide algorithms for regression with adversarial responses under large classes of non-i.i.d. instance sequences, on general separable metric spaces, with provably minimal assumptions. We also give characterizations of learnability in this regression context. We consider universal consistency which asks for strong consistency of a learner without restrictions on the value responses. Our analysis shows that such an objective is achievable for a significantly larger class of instance sequences than stationary processes, and unveils a fundamental dichotomy between value spaces: whether finite-horizon mean estimation is achievable or not. We further provide optimistically universal learning rules, i.e., such that if they fail to achieve universal consistency, any other algorithms will fail as well. For unbounded losses, we propose a mild integrability condition under which there exist algorithms for adversarial regression under large classes of non-i.i.d. instance sequences. In addition, our analysis also provides a learning rule for mean estimation in general metric spaces that is consistent under adversarial responses without any moment conditions on the sequence, a result of independent interest.
Quadratic Memory is Necessary for Optimal Query Complexity in Convex Optimization: Center-of-Mass is Pareto-Optimal
Blanchard, Moรฏse, Zhang, Junhui, Jaillet, Patrick
We give query complexity lower bounds for convex optimization and the related feasibility problem. We show that quadratic memory is necessary to achieve the optimal oracle complexity for first-order convex optimization. In particular, this shows that center-of-mass cutting-planes algorithms in dimension $d$ which use $\tilde O(d^2)$ memory and $\tilde O(d)$ queries are Pareto-optimal for both convex optimization and the feasibility problem, up to logarithmic factors. Precisely, we prove that to minimize $1$-Lipschitz convex functions over the unit ball to $1/d^4$ accuracy, any deterministic first-order algorithms using at most $d^{2-\delta}$ bits of memory must make $\tilde\Omega(d^{1+\delta/3})$ queries, for any $\delta\in[0,1]$. For the feasibility problem, in which an algorithm only has access to a separation oracle, we show a stronger trade-off: for at most $d^{2-\delta}$ memory, the number of queries required is $\tilde\Omega(d^{1+\delta})$. This resolves a COLT 2019 open problem of Woodworth and Srebro.
Federated Neural Bandits
Dai, Zhongxiang, Shu, Yao, Verma, Arun, Fan, Flint Xiaofeng, Low, Bryan Kian Hsiang, Jaillet, Patrick
Recent works on neural contextual bandits have achieved compelling performances due to their ability to leverage the strong representation power of neural networks (NNs) for reward prediction. Many applications of contextual bandits involve multiple agents who collaborate without sharing raw observations, thus giving rise to the setting of federated contextual bandits. Existing works on federated contextual bandits rely on linear or kernelized bandits, which may fall short when modeling complex real-world reward functions. So, this paper introduces the federated neural-upper confidence bound (FN-UCB) algorithm. To better exploit the federated setting, FN-UCB adopts a weighted combination of two UCBs: $\text{UCB}^{a}$ allows every agent to additionally use the observations from the other agents to accelerate exploration (without sharing raw observations), while $\text{UCB}^{b}$ uses an NN with aggregated parameters for reward prediction in a similar way to federated averaging for supervised learning. Notably, the weight between the two UCBs required by our theoretical analysis is amenable to an interesting interpretation, which emphasizes $\text{UCB}^{a}$ initially for accelerated exploration and relies more on $\text{UCB}^{b}$ later after enough observations have been collected to train the NNs for accurate reward prediction (i.e., reliable exploitation). We prove sub-linear upper bounds on both the cumulative regret and the number of communication rounds of FN-UCB, and empirically demonstrate its competitive performance.
Effective Dimension in Bandit Problems under Censorship
Guinet, Gauthier, Amin, Saurabh, Jaillet, Patrick
In this paper, we study both multi-armed and contextual bandit problems in censored environments. Our goal is to estimate the performance loss due to censorship in the context of classical algorithms designed for uncensored environments. Our main contributions include the introduction of a broad class of censorship models and their analysis in terms of the effective dimension of the problem -- a natural measure of its underlying statistical complexity and main driver of the regret bound. In particular, the effective dimension allows us to maintain the structure of the original problem at first order, while embedding it in a bigger space, and thus naturally leads to results analogous to uncensored settings. Our analysis involves a continuous generalization of the Elliptical Potential Inequality, which we believe is of independent interest. We also discover an interesting property of decision-making under censorship: a transient phase during which initial misspecification of censorship is self-corrected at an extra cost, followed by a stationary phase that reflects the inherent slowdown of learning governed by the effective dimension. Our results are useful for applications of sequential decision-making models where the feedback received depends on strategic uncertainty (e.g., agents' willingness to follow a recommendation) and/or random uncertainty (e.g., loss or delay in arrival of information).