Jagannathan, Suresh
A Framework for Learning Scoring Rules in Autonomous Driving Planning Systems
Xiong, Zikang, Eappen, Joe Kurian, Jagannathan, Suresh
In autonomous driving systems, motion planning is commonly implemented as a two-stage process: first, a trajectory proposer generates multiple candidate trajectories, then a scoring mechanism selects the most suitable trajectory for execution. For this critical selection stage, rule-based scoring mechanisms are particularly appealing as they can explicitly encode driving preferences, safety constraints, and traffic regulations in a formalized, human-understandable format. However, manually crafting these scoring rules presents significant challenges: the rules often contain complex interdependencies, require careful parameter tuning, and may not fully capture the nuances present in real-world driving data. This work introduces FLoRA, a novel framework that bridges this gap by learning interpretable scoring rules represented in temporal logic. Our method features a learnable logic structure that captures nuanced relationships across diverse driving scenarios, optimizing both rules and parameters directly from real-world driving demonstrations collected in NuPlan. Our approach effectively learns to evaluate driving behavior even though the training data only contains positive examples (successful driving demonstrations). Evaluations in closed-loop planning simulations demonstrate that our learned scoring rules outperform existing techniques, including expert-designed rules and neural network scoring models, while maintaining interpretability. This work introduces a data-driven approach to enhance the scoring mechanism in autonomous driving systems, designed as a plug-in module to seamlessly integrate with various trajectory proposers. Our video and code are available on xiong.zikang.me/FLoRA.
Scaling Safe Multi-Agent Control for Signal Temporal Logic Specifications
Eappen, Joe, Xiong, Zikang, Patel, Dipam, Bera, Aniket, Jagannathan, Suresh
This is because they rely either on single-agent perspectives or on Mixed Integer Linear Programming (MILP)-based planners, which are complex to optimize. These methods have proven to be computationally expensive and inefficient when dealing with a large number of agents. To address these limitations, we present a new scalable approach to multi-agent control in this setting. Our method treats the relationships between agents using a graph structure rather than in terms of a single-agent perspective. Moreover, it combines a multi-agent collision avoidance controller with a Graph Neural Network (GNN) based planner, models the system in a decentralized fashion, and trains on STL-based objectives to generate safe and efficient plans for multiple agents, thereby optimizing the satisfaction of complex temporal specifications while also facilitating multi-agent collision avoidance. Our experiments show that our approach significantly outperforms existing methods that use a state-of-the-art MILP-based planner in terms of scalability and performance.
SELP: Generating Safe and Efficient Task Plans for Robot Agents with Large Language Models
Wu, Yi, Xiong, Zikang, Hu, Yiran, Iyengar, Shreyash S., Jiang, Nan, Bera, Aniket, Tan, Lin, Jagannathan, Suresh
Despite significant advancements in large language models (LLMs) that enhance robot agents' understanding and execution of natural language (NL) commands, ensuring the agents adhere to user-specified constraints remains challenging, particularly for complex commands and long-horizon tasks. To address this challenge, we present three key insights, equivalence voting, constrained decoding, and domain-specific fine-tuning, which significantly enhance LLM planners' capability in handling complex tasks. Equivalence voting ensures consistency by generating and sampling multiple Linear Temporal Logic (LTL) formulas from NL commands, grouping equivalent LTL formulas, and selecting the majority group of formulas as the final LTL formula. Constrained decoding then uses the generated LTL formula to enforce the autoregressive inference of plans, ensuring the generated plans conform to the LTL. Domain-specific fine-tuning customizes LLMs to produce safe and efficient plans within specific task domains. Our approach, Safe Efficient LLM Planner (SELP), combines these insights to create LLM planners to generate plans adhering to user commands with high confidence. We demonstrate the effectiveness and generalizability of SELP across different robot agents and tasks, including drone navigation and robot manipulation. For drone navigation tasks, SELP outperforms state-of-the-art planners by 10.8% in safety rate (i.e., finishing tasks conforming to NL commands) and by 19.8% in plan efficiency. For robot manipulation tasks, SELP achieves 20.4% improvement in safety rate. Our datasets for evaluating NL-to-LTL and robot task planning will be released in github.com/lt-asset/selp.
Manipulating Neural Path Planners via Slight Perturbations
Xiong, Zikang, Jagannathan, Suresh
Data-driven neural path planners are attracting increasing interest in the robotics community. However, their neural network components typically come as black boxes, obscuring their underlying decision-making processes. Their black-box nature exposes them to the risk of being compromised via the insertion of hidden malicious behaviors. For example, an attacker may hide behaviors that, when triggered, hijack a delivery robot by guiding it to a specific (albeit wrong) destination, trapping it in a predefined region, or inducing unnecessary energy expenditure by causing the robot to repeatedly circle a region. In this paper, we propose a novel approach to specify and inject a range of hidden malicious behaviors, known as backdoors, into neural path planners. Our approach provides a concise but flexible way to define these behaviors, and we show that hidden behaviors can be triggered by slight perturbations (e.g., inserting a tiny unnoticeable object), that can nonetheless significantly compromise their integrity. We also discuss potential techniques to identify these backdoors aimed at alleviating such risks. We demonstrate our approach on both sampling-based and search-based neural path planners.
Co-learning Planning and Control Policies Constrained by Differentiable Logic Specifications
Xiong, Zikang, Lawson, Daniel, Eappen, Joe, Qureshi, Ahmed H., Jagannathan, Suresh
Synthesizing planning and control policies in robotics is a fundamental task, further complicated by factors such as complex logic specifications and high-dimensional robot dynamics. This paper presents a novel reinforcement learning approach to solving high-dimensional robot navigation tasks with complex logic specifications by co-learning planning and control policies. Notably, this approach significantly reduces the sample complexity in training, allowing us to train high-quality policies with much fewer samples compared to existing reinforcement learning algorithms. In addition, our methodology streamlines complex specification extraction from map images and enables the efficient generation of long-horizon robot motion paths across different map layouts. Moreover, our approach also demonstrates capabilities for high-dimensional control and avoiding suboptimal policies via policy alignment. The efficacy of our approach is demonstrated through experiments involving simulated high-dimensional quadruped robot dynamics and a real-world differential drive robot (TurtleBot3) under different types of task specifications.
Robustness to Adversarial Attacks in Learning-Enabled Controllers
Xiong, Zikang, Eappen, Joe, Zhu, He, Jagannathan, Suresh
Learning-enabled controllers used in cyber-physical systems (CPS) are known to be susceptible to adversarial attacks. Such attacks manifest as perturbations to the states generated by the controller's environment in response to its actions. We consider state perturbations that encompass a wide variety of adversarial attacks and describe an attack scheme for discovering adversarial states. To be useful, these attacks need to be natural, yielding states in which the controller can be reasonably expected to generate a meaningful response. We consider shield-based defenses as a means to improve controller robustness in the face of such perturbations. Our defense strategy allows us to treat the controller and environment as black-boxes with unknown dynamics. We provide a two-stage approach to construct this defense and show its effectiveness through a range of experiments on realistic continuous control domains such as the navigation control-loop of an F16 aircraft and the motion control system of humanoid robots.
ART: Abstraction Refinement-Guided Training for Provably Correct Neural Networks
Lin, Xuankang, Zhu, He, Samanta, Roopsha, Jagannathan, Suresh
Artificial neural networks (ANNs) have demonstrated remarkable utility in a variety of challenging machine learning applications. However, their complex architecture makes asserting any formal guarantees about their behavior difficult. Existing approaches to this problem typically consider verification as a post facto white-box process, one that reasons about the safety of an existing network through exploration of its internal structure, rather than via a methodology that ensures the network is correct-by-construction. In this paper, we present a novel learning framework that takes an important first step towards realizing such a methodology. Our technique enables the construction of provably correct networks with respect to a broad class of safety properties, a capability that goes well-beyond existing approaches. Overcoming the challenge of general safety property enforcement within the network training process in a supervised learning pipeline, however, requires a fundamental shift in how we architect and build ANNs. Our key insight is that we can integrate an optimization-based abstraction refinement loop into the learning process that iteratively splits the input space from which training data is drawn, based on the efficacy with which such a partition enables safety verification. To do so, our approach enables training to take place over an abstraction of a concrete network that operates over dynamically constructed partitions of the input space. We provide theoretical results that show that classical gradient descent methods used to optimize these networks can be seamlessly adopted to this framework to ensure soundness of our approach. Moreover, we empirically demonstrate that realizing soundness does not come at the price of accuracy, giving us a meaningful pathway for building both precise and correct networks.
An Inductive Synthesis Framework for Verifiable Reinforcement Learning
Zhu, He, Xiong, Zikang, Magill, Stephen, Jagannathan, Suresh
Despite the tremendous advances that have been made in the last decade on developing useful machine-learning applications, their wider adoption has been hindered by the lack of strong assurance guarantees that can be made about their behavior. In this paper, we consider how formal verification techniques developed for traditional software systems can be repurposed for verification of reinforcement learning-enabled ones, a particularly important class of machine learning systems. Rather than enforcing safety by examining and altering the structure of a complex neural network implementation, our technique uses blackbox methods to synthesizes deterministic programs, simpler, more interpretable, approximations of the network that can nonetheless guarantee desired safety properties are preserved, even when the network is deployed in unanticipated or previously unobserved environments. Our methodology frames the problem of neural network verification in terms of a counterexample and syntax-guided inductive synthesis procedure over these programs. The synthesis procedure searches for both a deterministic program and an inductive invariant over an infinite state transition system that represents a specification of an application's control logic. Additional specifications defining environment-based constraints can also be provided to further refine the search space. Synthesized programs deployed in conjunction with a neural network implementation dynamically enforce safety conditions by monitoring and preventing potentially unsafe actions proposed by neural policies. Experimental results over a wide range of cyber-physical applications demonstrate that software-inspired formal verification techniques can be used to realize trustworthy reinforcement learning systems with low overhead.