Jagadeesan, Meena
Flattening Supply Chains: When do Technology Improvements lead to Disintermediation?
Ali, S. Nageeb, Immorlica, Nicole, Jagadeesan, Meena, Lucier, Brendan
In the digital economy, technological innovations make it cheaper to produce high-quality content. For example, generative AI tools reduce costs for creators who develop content to be distributed online, but can also reduce production costs for the users who consume that content. These innovations can thus lead to disintermediation, since consumers may choose to use these technologies directly, bypassing intermediaries. To investigate when technological improvements lead to disintermediation, we study a game with an intermediary, suppliers of a production technology, and consumers. First, we show disintermediation occurs whenever production costs are too high or too low. We then investigate the consequences of disintermediation for welfare and content quality at equilibrium. While the intermediary is welfare-improving, the intermediary extracts all gains to social welfare and its presence can raise or lower content quality. We further analyze how disintermediation is affected by the level of competition between suppliers and the intermediary's fee structure. More broadly, our results take a step towards assessing how production technology innovations affect the survival of intermediaries and impact the digital economy.
Impact of Decentralized Learning on Player Utilities in Stackelberg Games
Donahue, Kate, Immorlica, Nicole, Jagadeesan, Meena, Lucier, Brendan, Slivkins, Aleksandrs
When deployed in the world, a learning agent such as a recommender system or a chatbot often repeatedly interacts with another learning agent (such as a user) over time. In many such two-agent systems, each agent learns separately and the rewards of the two agents are not perfectly aligned. To better understand such cases, we examine the learning dynamics of the two-agent system and the implications for each agent's objective. We model these systems as Stackelberg games with decentralized learning and show that standard regret benchmarks (such as Stackelberg equilibrium payoffs) result in worst-case linear regret for at least one player. To better capture these systems, we construct a relaxed regret benchmark that is tolerant to small learning errors by agents. We show that standard learning algorithms fail to provide sublinear regret, and we develop algorithms to achieve near-optimal $O(T^{2/3})$ regret for both players with respect to these benchmarks. We further design relaxed environments under which faster learning ($O(\sqrt{T})$) is possible. Altogether, our results take a step towards assessing how two-agent interactions in sequential and decentralized learning environments affect the utility of both agents.
Accounting for AI and Users Shaping One Another: The Role of Mathematical Models
Dean, Sarah, Dong, Evan, Jagadeesan, Meena, Leqi, Liu
As AI systems enter into a growing number of societal domains, these systems increasingly shape and are shaped by user preferences, opinions, and behaviors. However, the design of AI systems rarely accounts for how AI and users shape one another. In this position paper, we argue for the development of formal interaction models which mathematically specify how AI and users shape one another. Formal interaction models can be leveraged to (1) specify interactions for implementation, (2) monitor interactions through empirical analysis, (3) anticipate societal impacts via counterfactual analysis, and (4) control societal impacts via interventions. The design space of formal interaction models is vast, and model design requires careful consideration of factors such as style, granularity, mathematical complexity, and measurability. Using content recommender systems as a case study, we critically examine the nascent literature of formal interaction models with respect to these use-cases and design axes. More broadly, we call for the community to leverage formal interaction models when designing, evaluating, or auditing any AI system which interacts with users.
Feedback Loops With Language Models Drive In-Context Reward Hacking
Pan, Alexander, Jones, Erik, Jagadeesan, Meena, Steinhardt, Jacob
Language models influence the external world: they query APIs that read and write to web pages, generate content that shapes human behavior, and run system commands as autonomous agents. These interactions form feedback loops: LLM outputs affect the world, which in turn affect subsequent LLM outputs. In this work, we show that feedback loops can cause in-context reward hacking (ICRH), where the LLM at test-time optimizes a (potentially implicit) objective but creates negative side effects in the process. For example, consider an LLM agent posting tweets with the objective of maximizing Twitter engagement; the LLM may retrieve its previous tweets into the context window and make its subsequent tweets more controversial, increasing engagement but also toxicity. We identify and study two processes that lead to ICRH: output-refinement and policy-refinement. For these processes, evaluations on static datasets are insufficient--they miss the feedback effects and thus cannot capture the most harmful behavior. In response, we provide three recommendations for evaluation to capture more instances of ICRH. As AI development accelerates, the effects of feedback loops will proliferate, increasing the need to understand their role in shaping LLM behavior.
Can Probabilistic Feedback Drive User Impacts in Online Platforms?
Dai, Jessica, Flanigan, Bailey, Haghtalab, Nika, Jagadeesan, Meena, Podimata, Chara
A common explanation for negative user impacts of content recommender systems is misalignment between the platform's objective and user welfare. In this work, we show that misalignment in the platform's objective is not the only potential cause of unintended impacts on users: even when the platform's objective is fully aligned with user welfare, the platform's learning algorithm can induce negative downstream impacts on users. The source of these user impacts is that different pieces of content may generate observable user reactions (feedback information) at different rates; these feedback rates may correlate with content properties, such as controversiality or demographic similarity of the creator, that affect the user experience. Since differences in feedback rates can impact how often the learning algorithm engages with different content, the learning algorithm may inadvertently promote content with certain such properties. Using the multi-armed bandit framework with probabilistic feedback, we examine the relationship between feedback rates and a learning algorithm's engagement with individual arms for different no-regret algorithms. We prove that no-regret algorithms can exhibit a wide range of dependencies: if the feedback rate of an arm increases, some no-regret algorithms engage with the arm more, some no-regret algorithms engage with the arm less, and other no-regret algorithms engage with the arm approximately the same number of times. From a platform design perspective, our results highlight the importance of looking beyond regret when measuring an algorithm's performance, and assessing the nature of a learning algorithm's engagement with different types of content as well as their resulting downstream impacts.
Clickbait vs. Quality: How Engagement-Based Optimization Shapes the Content Landscape in Online Platforms
Immorlica, Nicole, Jagadeesan, Meena, Lucier, Brendan
Online content platforms commonly use engagement-based optimization when making recommendations. This encourages content creators to invest in quality, but also rewards gaming tricks such as clickbait. To understand the total impact on the content landscape, we study a game between content creators competing on the basis of engagement metrics and analyze the equilibrium decisions about investment in quality and gaming. First, we show the content created at equilibrium exhibits a positive correlation between quality and gaming, and we empirically validate this finding on a Twitter dataset. Using the equilibrium structure of the content landscape, we then examine the downstream performance of engagement-based optimization along several axes. Perhaps counterintuitively, the average quality of content consumed by users can decrease at equilibrium as gaming tricks become more costly for content creators to employ. Moreover, engagement-based optimization can perform worse in terms of user utility than a baseline with random recommendations, and engagement-based optimization is also suboptimal in terms of realized engagement relative to quality-based optimization. Altogether, our results highlight the need to consider content creator incentives when evaluating a platform's choice of optimization metric.
Supply-Side Equilibria in Recommender Systems
Jagadeesan, Meena, Garg, Nikhil, Steinhardt, Jacob
Algorithmic recommender systems such as Spotify and Netflix affect not only consumer behavior but also producer incentives. Producers seek to create content that will be shown by the recommendation algorithm, which can impact both the diversity and quality of their content. In this work, we investigate the resulting supply-side equilibria in personalized content recommender systems. We model users and content as $D$-dimensional vectors, the recommendation algorithm as showing each user the content with highest dot product, and producers as maximizing the number of users who are recommended their content minus the cost of production. Two key features of our model are that the producer decision space is multi-dimensional and the user base is heterogeneous, which contrasts with classical low-dimensional models. Multi-dimensionality and heterogeneity create the potential for specialization, where different producers create different types of content at equilibrium. Using a duality argument, we derive necessary and sufficient conditions for whether specialization occurs: these conditions depend on the extent to which users are heterogeneous and to which producers can perform well on all dimensions at once without incurring a high cost. Then, we characterize the distribution of content at equilibrium in concrete settings with two populations of users. Lastly, we show that specialization can enable producers to achieve positive profit at equilibrium, which means that specialization can reduce the competitiveness of the marketplace. At a conceptual level, our analysis of supply-side competition takes a step towards elucidating how personalized recommendations shape the marketplace of digital goods, and towards understanding what new phenomena arise in multi-dimensional competitive settings.
Improved Bayes Risk Can Yield Reduced Social Welfare Under Competition
Jagadeesan, Meena, Jordan, Michael I., Steinhardt, Jacob, Haghtalab, Nika
As the scale of machine learning models increases, trends such as scaling laws anticipate consistent downstream improvements in predictive accuracy. However, these trends take the perspective of a single model-provider in isolation, while in reality providers often compete with each other for users. In this work, we demonstrate that competition can fundamentally alter the behavior of these scaling trends, even causing overall predictive accuracy across users to be non-monotonic or decreasing with scale. We define a model of competition for classification tasks, and use data representations as a lens for studying the impact of increases in scale. We find many settings where improving data representation quality (as measured by Bayes risk) decreases the overall predictive accuracy across users (i.e., social welfare) for a marketplace of competing model-providers. Our examples range from closed-form formulas in simple settings to simulations with pretrained representations on CIFAR-10. At a conceptual level, our work suggests that favorable scaling trends for individual model-providers need not translate to downstream improvements in social welfare in marketplaces with multiple model providers.
Incentivizing High-Quality Content in Online Recommender Systems
Hu, Xinyan, Jagadeesan, Meena, Jordan, Michael I., Steinhardt, Jacob
For content recommender systems such as TikTok and YouTube, the platform's decision algorithm shapes the incentives of content producers, including how much effort the content producers invest in the quality of their content. Many platforms employ online learning, which creates intertemporal incentives, since content produced today affects recommendations of future content. In this paper, we study the incentives arising from online learning, analyzing the quality of content produced at a Nash equilibrium. We show that classical online learning algorithms, such as Hedge and EXP3, unfortunately incentivize producers to create low-quality content. In particular, the quality of content is upper bounded in terms of the learning rate and approaches zero for typical learning rate schedules. Motivated by this negative result, we design a different learning algorithm -- based on punishing producers who create low-quality content -- that correctly incentivizes producers to create high-quality content. At a conceptual level, our work illustrates the unintended impact that a platform's learning algorithm can have on content quality and opens the door towards designing platform learning algorithms that incentivize the creation of high-quality content.
Regret Minimization with Performative Feedback
Jagadeesan, Meena, Zrnic, Tijana, Mendler-Dünner, Celestine
In performative prediction, the deployment of a predictive model triggers a shift in the data distribution. As these shifts are typically unknown ahead of time, the learner needs to deploy a model to get feedback about the distribution it induces. We study the problem of finding near-optimal models under performativity while maintaining low regret. On the surface, this problem might seem equivalent to a bandit problem. However, it exhibits a fundamentally richer feedback structure that we refer to as performative feedback: after every deployment, the learner receives samples from the shifted distribution rather than only bandit feedback about the reward. Our main contribution is regret bounds that scale only with the complexity of the distribution shifts and not that of the reward function. The key algorithmic idea is careful exploration of the distribution shifts that informs a novel construction of confidence bounds on the risk of unexplored models. The construction only relies on smoothness of the shifts and does not assume convexity. More broadly, our work establishes a conceptual approach for leveraging tools from the bandits literature for the purpose of regret minimization with performative feedback.