Goto

Collaborating Authors

 Jafarlou, Salar


Loneliness Forecasting Using Multi-modal Wearable and Mobile Sensing in Everyday Settings

arXiv.org Artificial Intelligence

The adverse effects of loneliness on both physical and mental well-being are profound. Although previous research has utilized mobile sensing techniques to detect mental health issues, few studies have utilized state-of-the-art wearable devices to forecast loneliness and estimate the physiological manifestations of loneliness and its predictive nature. The primary objective of this study is to examine the feasibility of forecasting loneliness by employing wearable devices, such as smart rings and watches, to monitor early physiological indicators of loneliness. Furthermore, smartphones are employed to capture initial behavioral signs of loneliness. To accomplish this, we employed personalized machine learning techniques, leveraging a comprehensive dataset comprising physiological and behavioral information obtained during our study involving the monitoring of college students. Through the development of personalized models, we achieved a notable accuracy of 0.82 and an F-1 score of 0.82 in forecasting loneliness levels seven days in advance. Additionally, the application of Shapley values facilitated model explainability. The wealth of data provided by this study, coupled with the forecasting methodology employed, possesses the potential to augment interventions and facilitate the early identification of loneliness within populations at risk.


Enhancing Performance and User Engagement in Everyday Stress Monitoring: A Context-Aware Active Reinforcement Learning Approach

arXiv.org Artificial Intelligence

In today's fast-paced world, accurately monitoring stress levels is crucial. Sensor-based stress monitoring systems often need large datasets for training effective models. However, individual-specific models are necessary for personalized and interactive scenarios. Traditional methods like Ecological Momentary Assessments (EMAs) assess stress but struggle with efficient data collection without burdening users. The challenge is to timely send EMAs, especially during stress, balancing monitoring efficiency and user convenience. This paper introduces a novel context-aware active reinforcement learning (RL) algorithm for enhanced stress detection using Photoplethysmography (PPG) data from smartwatches and contextual data from smartphones. Our approach dynamically selects optimal times for deploying EMAs, utilizing the user's immediate context to maximize label accuracy and minimize intrusiveness. Initially, the study was executed in an offline environment to refine the label collection process, aiming to increase accuracy while reducing user burden. Later, we integrated a real-time label collection mechanism, transitioning to an online methodology. This shift resulted in an 11% improvement in stress detection efficiency. Incorporating contextual data improved model accuracy by 4%. Personalization studies indicated a 10% enhancement in AUC-ROC scores, demonstrating better stress level differentiation. This research marks a significant move towards personalized, context-driven real-time stress monitoring methods.


Analyzing Large Receptive Field Convolutional Networks for Distant Speech Recognition

arXiv.org Machine Learning

Despite significant efforts over the last few years to build a robust automatic speech recognition (ASR) system for different acoustic settings, the performance of the current state-of-the-art technologies significantly degrades in noisy reverberant environments. Convolutional Neural Networks (CNNs) have been successfully used to achieve substantial improvements in many speech processing applications including distant speech recognition (DSR). However, standard CNN architectures were not efficient in capturing long-term speech dynamics, which are essential in the design of a robust DSR system. In the present study, we address this issue by investigating variants of large receptive field CNNs (LRF-CNNs) which include deeply recursive networks, dilated convolutional neural networks, and stacked hourglass networks. To compare the efficacy of the aforementioned architectures with the standard CNN for Wall Street Journal (WSJ) corpus, we use a hybrid DNN-HMM based speech recognition system. We extend the study to evaluate the system performances for distant speech simulated using realistic room impulse responses (RIRs). Our experiments show that with fixed number of parameters across all architectures, the large receptive field networks show consistent improvements over the standard CNNs for distant speech. Amongst the explored LRF-CNNs, stacked hourglass network has shown improvements with a 8.9% relative reduction in word error rate (WER) and 10.7% relative improvement in frame accuracy compared to the standard CNNs for distant simulated speech signals.