Goto

Collaborating Authors

 J. Zico Kolter


Adversarial Music: Real world Audio Adversary against Wake-word Detection System

Neural Information Processing Systems

Voice Assistants (VAs) such as Amazon Alexa or Google Assistant rely on wakeword detection to respond to people's commands, which could potentially be vulnerable to audio adversarial examples. In this work, we target our attack on the wake-word detection system, jamming the model with some inconspicuous background music to deactivate the VAs while our audio adversary is present. We implemented an emulated wake-word detection system of Amazon Alexa based on recent publications.




Learning Stable Deep Dynamics Models

Neural Information Processing Systems

Deep networks are commonly used to model dynamical systems, predicting how the state of a system will evolve over time (either autonomously or in response to control inputs). Despite the predictive power of these systems, it has been difficult to make formal claims about the basic properties of the learned systems. In this paper, we propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space. The approach works by jointly learning a dynamics model and Lyapunov function that guarantees non-expansiveness of the dynamics under the learned Lyapunov function. We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics, such as video textures, in a fully end-to-end fashion.


Uniform convergence may be unable to explain generalization in deep learning

Neural Information Processing Systems

Aimed at explaining the surprisingly good generalization behavior of overparameterized deep networks, recent works have developed a variety of generalization bounds for deep learning, all based on the fundamental learning-theoretic technique of uniform convergence. While it is well-known that many of these existing bounds are numerically large, through numerous experiments, we bring to light a more concerning aspect of these bounds: in practice, these bounds can increase with the training dataset size. Guided by our observations, we then present examples of overparameterized linear classifiers and neural networks trained by gradient descent (GD) where uniform convergence provably cannot "explain generalization" - even if we take into account the implicit bias of GD to the fullest extent possible. More precisely, even if we consider only the set of classifiers output by GD, which have test errors less than some small ɛ in our settings, we show that applying (two-sided) uniform convergence on this set of classifiers will yield only a vacuous generalization guarantee larger than 1 ɛ. Through these findings, we cast doubt on the power of uniform convergence-based generalization bounds to provide a complete picture of why overparameterized deep networks generalize well.


Deep Equilibrium Models

Neural Information Processing Systems

We present a new approach to modeling sequential data: the deep equilibrium model (DEQ). Motivated by an observation that the hidden layers of many existing deep sequence models converge towards some fixed point, we propose the DEQ approach that directly finds these equilibrium points via root-finding. Such a method is equivalent to running an infinite depth (weight-tied) feedforward network, but has the notable advantage that we can analytically backpropagate through the equilibrium point using implicit differentiation. Using this approach, training and prediction in these networks require only constant memory, regardless of the effective "depth" of the network. We demonstrate how DEQs can be applied to two state-of-the-art deep sequence models: self-attention transformers and trellis networks. On large-scale language modeling tasks, such as the WikiText-103 benchmark, we show that DEQs 1) often improve performance over these stateof-the-art models (for similar parameter counts); 2) have similar computational requirements to existing models; and 3) vastly reduce memory consumption (often the bottleneck for training large sequence models), demonstrating an up-to 88% memory reduction in our experiments.


Differentiable Convex Optimization Layers

Neural Information Processing Systems

Recent work has shown how to embed differentiable optimization problems (that is, problems whose solutions can be backpropagated through) as layers within deep learning architectures. This method provides a useful inductive bias for certain problems, but existing software for differentiable optimization layers is rigid and difficult to apply to new settings. In this paper, we propose an approach to differentiating through disciplined convex programs, a subclass of convex optimization problems used by domain-specific languages (DSLs) for convex optimization. We introduce disciplined parametrized programming, a subset of disciplined convex programming, and we show that every disciplined parametrized program can be represented as the composition of an affine map from parameters to problem data, a solver, and an affine map from the solver's solution to a solution of the original problem (a new form we refer to as affine-solver-affine form). We then demonstrate how to efficiently differentiate through each of these components, allowing for end-to-end analytical differentiation through the entire convex program. We implement our methodology in version 1.1 of CVXPY, a popular Python-embedded DSL for convex optimization, and additionally implement differentiable layers for disciplined convex programs in PyTorch and TensorFlow 2.0. Our implementation significantly lowers the barrier to using convex optimization problems in differentiable programs. We present applications in linear machine learning models and in stochastic control, and we show that our layer is competitive (in execution time) compared to specialized differentiable solvers from past work.


Learning Stable Deep Dynamics Models

Neural Information Processing Systems

Deep networks are commonly used to model dynamical systems, predicting how the state of a system will evolve over time (either autonomously or in response to control inputs). Despite the predictive power of these systems, it has been difficult to make formal claims about the basic properties of the learned systems. In this paper, we propose an approach for learning dynamical systems that are guaranteed to be stable over the entire state space. The approach works by jointly learning a dynamics model and Lyapunov function that guarantees non-expansiveness of the dynamics under the learned Lyapunov function. We show that such learning systems are able to model simple dynamical systems and can be combined with additional deep generative models to learn complex dynamics, such as video textures, in a fully end-to-end fashion.


Uniform convergence may be unable to explain generalization in deep learning

Neural Information Processing Systems

Aimed at explaining the surprisingly good generalization behavior of overparameterized deep networks, recent works have developed a variety of generalization bounds for deep learning, all based on the fundamental learning-theoretic technique of uniform convergence. While it is well-known that many of these existing bounds are numerically large, through numerous experiments, we bring to light a more concerning aspect of these bounds: in practice, these bounds can increase with the training dataset size. Guided by our observations, we then present examples of overparameterized linear classifiers and neural networks trained by gradient descent (GD) where uniform convergence provably cannot "explain generalization" - even if we take into account the implicit bias of GD to the fullest extent possible. More precisely, even if we consider only the set of classifiers output by GD, which have test errors less than some small ɛ in our settings, we show that applying (two-sided) uniform convergence on this set of classifiers will yield only a vacuous generalization guarantee larger than 1 ɛ. Through these findings, we cast doubt on the power of uniform convergence-based generalization bounds to provide a complete picture of why overparameterized deep networks generalize well.


Deep Equilibrium Models

Neural Information Processing Systems

We present a new approach to modeling sequential data: the deep equilibrium model (DEQ). Motivated by an observation that the hidden layers of many existing deep sequence models converge towards some fixed point, we propose the DEQ approach that directly finds these equilibrium points via root-finding. Such a method is equivalent to running an infinite depth (weight-tied) feedforward network, but has the notable advantage that we can analytically backpropagate through the equilibrium point using implicit differentiation. Using this approach, training and prediction in these networks require only constant memory, regardless of the effective "depth" of the network. We demonstrate how DEQs can be applied to two state-of-the-art deep sequence models: self-attention transformers and trellis networks. On large-scale language modeling tasks, such as the WikiText-103 benchmark, we show that DEQs 1) often improve performance over these stateof-the-art models (for similar parameter counts); 2) have similar computational requirements to existing models; and 3) vastly reduce memory consumption (often the bottleneck for training large sequence models), demonstrating an up-to 88% memory reduction in our experiments.