Goto

Collaborating Authors

 Jäckl, Bastian


Leveraging Color Channel Independence for Improved Unsupervised Object Detection

arXiv.org Artificial Intelligence

Object-centric architectures can learn to extract distinct object representations from visual scenes, enabling downstream applications on the object level. Similarly to autoencoder-based image models, object-centric approaches have been trained on the unsupervised reconstruction loss of images encoded by RGB color spaces. In our work, we challenge the common assumption that RGB images are the optimal color space for unsupervised learning in computer vision. We discuss conceptually and empirically that other color spaces, such as HSV, bear essential characteristics for object-centric representation learning, like robustness to lighting conditions. We further show that models improve when requiring them to predict additional color channels. Specifically, we propose to transform the predicted targets to the RGB-S space, which extends RGB with HSV's saturation component and leads to markedly better reconstruction and disentanglement for five common evaluation datasets. The use of composite color spaces can be implemented with basically no computational overhead, is agnostic of the models' architecture, and is universally applicable across a wide range of visual computing tasks and training types. The findings of our approach encourage additional investigations in computer vision tasks beyond object-centric learning.


Hydrogen under Pressure as a Benchmark for Machine-Learning Interatomic Potentials

arXiv.org Artificial Intelligence

Machine-learning interatomic potentials (MLPs) are fast, data-driven surrogate models of atomistic systems' potential energy surfaces that can accelerate ab-initio molecular dynamics (MD) simulations by several orders of magnitude. The performance of MLPs is commonly measured as the prediction error in energies and forces on data not used in their training. While low prediction errors on a test set are necessary, they do not guarantee good performance in MD simulations. The latter requires physically motivated performance measures obtained from running accelerated simulations. However, the adoption of such measures has been limited by the effort and domain knowledge required to calculate and interpret them. To overcome this limitation, we present a benchmark that automatically quantifies the performance of MLPs in MD simulations of a liquid-liquid phase transition in hydrogen under pressure, a challenging benchmark system. The benchmark's h-llpt-24 dataset provides reference geometries, energies, forces, and stresses from density functional theory MD simulations at different temperatures and mass densities. The benchmark's Python code automatically runs MLP-accelerated MD simulations and calculates, quantitatively compares and visualizes pressures, stable molecular fractions, diffusion coefficients, and radial distribution functions. Employing this benchmark, we show that several state-of-the-art MLPs fail to reproduce the liquid-liquid phase transition.