Plotting

 Iyer, Vivek


XL-Instruct: Synthetic Data for Cross-Lingual Open-Ended Generation

arXiv.org Artificial Intelligence

Cross-lingual open-ended generation -- i.e. generating responses in a desired language different from that of the user's query -- is an important yet understudied problem. We introduce XL-AlpacaEval, a new benchmark for evaluating cross-lingual generation capabilities in Large Language Models (LLMs), and propose XL-Instruct, a high-quality synthetic data generation method. Fine-tuning with just 8K XL-Instruct-generated instructions significantly improves model performance, increasing the win rate against GPT-4o-Mini from 7.4% to 21.5%, and improving on several fine-grained quality metrics. Additionally, models fine-tuned on XL-Instruct exhibit strong zero-shot transfer to both English-only and multilingual generation tasks. Given its consistent gains across the board, we strongly recommend incorporating XL-Instruct in the post-training pipeline of future multilingual LLMs. To facilitate further research, we will publicly and freely release the XL-Instruct and XL-AlpacaEval datasets, which constitute two of the few cross-lingual resources currently available in the literature.


Towards Automatic Evaluation for Image Transcreation

arXiv.org Artificial Intelligence

Beyond conventional paradigms of translating speech and text, recently, there has been interest in automated transcreation of images to facilitate localization of visual content across different cultures. Attempts to define this as a formal Machine Learning (ML) problem have been impeded by the lack of automatic evaluation mechanisms, with previous work relying solely on human evaluation. In this paper, we seek to close this gap by proposing a suite of automatic evaluation metrics inspired by machine translation (MT) metrics, categorized into: a) Object-based, b) Embedding-based, and c) VLM-based. Drawing on theories from translation studies and real-world transcreation practices, we identify three critical dimensions of image transcreation: cultural relevance, semantic equivalence and visual similarity, and design our metrics to evaluate systems along these axes. Our results show that proprietary VLMs best identify cultural relevance and semantic equivalence, while vision-encoder representations are adept at measuring visual similarity. Meta-evaluation across 7 countries shows our metrics agree strongly with human ratings, with average segment-level correlations ranging from 0.55-0.87. Finally, through a discussion of the merits and demerits of each metric, we offer a robust framework for automated image transcreation evaluation, grounded in both theoretical foundations and practical application. Our code can be found here: https://github.com/simran-khanuja/automatic-eval-transcreation


mHuBERT-147: A Compact Multilingual HuBERT Model

arXiv.org Artificial Intelligence

We present mHuBERT-147, the first general-purpose massively multilingual HuBERT speech representation model trained on 90K hours of clean, open-license data. To scale up the multi-iteration HuBERT approach, we use faiss-based clustering, achieving 5.2x faster label assignment than the original method. We also apply a new multilingual batching up-sampling strategy, leveraging both language and dataset diversity. After 3 training iterations, our compact 95M parameter mHuBERT-147 outperforms larger models trained on substantially more data. We rank second and first on the ML-SUPERB 10min and 1h leaderboards, with SOTA scores for 3 tasks. Across ASR/LID tasks, our model consistently surpasses XLS-R (300M params; 436K hours) and demonstrates strong competitiveness against the much larger MMS (1B params; 491K hours). Our findings indicate that mHuBERT-147 is a promising model for multilingual speech tasks, offering an unprecedented balance between high performance and parameter efficiency.


Code-Switching with Word Senses for Pretraining in Neural Machine Translation

arXiv.org Artificial Intelligence

Lexical ambiguity is a significant and pervasive challenge in Neural Machine Translation (NMT), with many state-of-the-art (SOTA) NMT systems struggling to handle polysemous words (Campolungo et al., 2022). The same holds for the NMT pretraining paradigm of denoising synthetic "code-switched" text (Pan et al., 2021; Iyer et al., 2023), where word senses are ignored in the noising stage -- leading to harmful sense biases in the pretraining data that are subsequently inherited by the resulting models. In this work, we introduce Word Sense Pretraining for Neural Machine Translation (WSP-NMT) - an end-to-end approach for pretraining multilingual NMT models leveraging word sense-specific information from Knowledge Bases. Our experiments show significant improvements in overall translation quality. Then, we show the robustness of our approach to scale to various challenging data and resource-scarce scenarios and, finally, report fine-grained accuracy improvements on the DiBiMT disambiguation benchmark. Our studies yield interesting and novel insights into the merits and challenges of integrating word sense information and structured knowledge in multilingual pretraining for NMT.


Towards Effective Disambiguation for Machine Translation with Large Language Models

arXiv.org Artificial Intelligence

Resolving semantic ambiguity has long been recognised as a central challenge in the field of Machine Translation. Recent work on benchmarking translation performance on ambiguous sentences has exposed the limitations of conventional Neural Machine Translation (NMT) systems, which fail to handle many such cases. Large language models (LLMs) have emerged as a promising alternative, demonstrating comparable performance to traditional NMT models while introducing new paradigms for controlling the target outputs. In this paper, we study the capabilities of LLMs to translate "ambiguous sentences" - i.e. those containing highly polysemous words and/or rare word senses. We also propose two ways to improve their disambiguation capabilities, through a) in-context learning and b) fine-tuning on carefully curated ambiguous datasets. Experiments show that our methods can match or outperform state-of-the-art systems such as DeepL and NLLB in four out of five language directions. Our research provides valuable insights into effectively adapting LLMs to become better disambiguators during Machine Translation. We release our curated disambiguation corpora and resources at https://data.statmt.org/ambiguous-europarl.


Multifaceted Context Representation using Dual Attention for Ontology Alignment

arXiv.org Artificial Intelligence

Ontology Alignment is an important research problem that finds application in various fields such as data integration, data transfer, data preparation etc. State-of-the-art (SOTA) architectures in Ontology Alignment typically use naive domain-dependent approaches with handcrafted rules and manually assigned values, making them unscalable and inefficient. Deep Learning approaches for ontology alignment use domain-specific architectures that are not only in-extensible to other datasets and domains, but also typically perform worse than rule-based approaches due to various limitations including over-fitting of models, sparsity of datasets etc. In this work, we propose VeeAlign, a Deep Learning based model that uses a dual-attention mechanism to compute the contextualized representation of a concept in order to learn alignments. By doing so, not only does our approach exploit both syntactic and semantic structure of ontologies, it is also, by design, flexible and scalable to different domains with minimal effort. We validate our approach on various datasets from different domains and in multilingual settings, and show its superior performance over SOTA methods.