Goto

Collaborating Authors

 Iyer, Ravi


AI and the Future of Digital Public Squares

arXiv.org Artificial Intelligence

Two substantial technological advances have reshaped the public square in recent decades: first with the advent of the internet and second with the recent introduction of large language models (LLMs). LLMs offer opportunities for a paradigm shift towards more decentralized, participatory online spaces that can be used to facilitate deliberative dialogues at scale, but also create risks of exacerbating societal schisms. Here, we explore four applications of LLMs to improve digital public squares: collective dialogue systems, bridging systems, community moderation, and proof-of-humanity systems. Building on the input from over 70 civil society experts and technologists, we argue that LLMs both afford promising opportunities to shift the paradigm for conversations at scale and pose distinct risks for digital public squares. We lay out an agenda for future research and investments in AI that will strengthen digital public squares and safeguard against potential misuses of AI.


RAPID: Enabling Fast Online Policy Learning in Dynamic Public Cloud Environments

arXiv.org Artificial Intelligence

Resource sharing between multiple workloads has become a prominent practice among cloud service providers, motivated by demand for improved resource utilization and reduced cost of ownership. Effective resource sharing, however, remains an open challenge due to the adverse effects that resource contention can have on high-priority, user-facing workloads with strict Quality of Service (QoS) requirements. Although recent approaches have demonstrated promising results, those works remain largely impractical in public cloud environments since workloads are not known in advance and may only run for a brief period, thus prohibiting offline learning and significantly hindering online learning. In this paper, we propose RAPID, a novel framework for fast, fully-online resource allocation policy learning in highly dynamic operating environments. RAPID leverages lightweight QoS predictions, enabled by domain-knowledge-inspired techniques for sample efficiency and bias reduction, to decouple control from conventional feedback sources and guide policy learning at a rate orders of magnitude faster than prior work. Evaluation on a real-world server platform with representative cloud workloads confirms that RAPID can learn stable resource allocation policies in minutes, as compared with hours in prior state-of-the-art, while improving QoS by 9.0x and increasing best-effort workload performance by 19-43%.


Mem-Rec: Memory Efficient Recommendation System using Alternative Representation

arXiv.org Artificial Intelligence

Deep learning-based recommendation systems (e.g., DLRMs) are widely used AI models to provide high-quality personalized recommendations. Training data used for modern recommendation systems commonly includes categorical features taking on tens-of-millions of possible distinct values. These categorical tokens are typically assigned learned vector representations, that are stored in large embedding tables, on the order of 100s of GB. Storing and accessing these tables represent a substantial burden in commercial deployments. Our work proposes MEM-REC, a novel alternative representation approach for embedding tables. MEM-REC leverages bloom filters and hashing methods to encode categorical features using two cache-friendly embedding tables. The first table (token embedding) contains raw embeddings (i.e. learned vector representation), and the second table (weight embedding), which is much smaller, contains weights to scale these raw embeddings to provide better discriminative capability to each data point. We provide a detailed architecture, design and analysis of MEM-REC addressing trade-offs in accuracy and computation requirements, in comparison with state-of-the-art techniques. We show that MEM-REC can not only maintain the recommendation quality and significantly reduce the memory footprint for commercial scale recommendation models but can also improve the embedding latency. In particular, based on our results, MEM-REC compresses the MLPerf CriteoTB benchmark DLRM model size by 2900x and performs up to 3.4x faster embeddings while achieving the same AUC as that of the full uncompressed model.


Streaming Encoding Algorithms for Scalable Hyperdimensional Computing

arXiv.org Artificial Intelligence

Hyperdimensional computing (HDC) is a paradigm for data representation and learning originating in computational neuroscience. HDC represents data as high-dimensional, low-precision vectors which can be used for a variety of information processing tasks like learning or recall. The mapping to high-dimensional space is a fundamental problem in HDC, and existing methods encounter scalability issues when the input data itself is high-dimensional. In this work, we explore a family of streaming encoding techniques based on hashing. We show formally that these methods enjoy comparable guarantees on performance for learning applications while being substantially more efficient than existing alternatives. We validate these results experimentally on a popular high-dimensional classification problem and show that our approach easily scales to very large data sets.


EZNAS: Evolving Zero Cost Proxies For Neural Architecture Scoring

arXiv.org Artificial Intelligence

Neural Architecture Search (NAS) has significantly improved productivity in the design and deployment of neural networks (NN). As NAS typically evaluates multiple models by training them partially or completely, the improved productivity comes at the cost of significant carbon footprint. To alleviate this expensive training routine, zero-shot/cost proxies analyze an NN at initialization to generate a score, which correlates highly with its true accuracy. Zero-cost proxies are currently designed by experts conducting multiple cycles of empirical testing on possible algorithms, datasets, and neural architecture design spaces. This experimentation lowers productivity and is an unsustainable approach towards zero-cost proxy design as deep learning use-cases diversify in nature. Additionally, existing zero-cost proxies fail to generalize across neural architecture design spaces. In this paper, we propose a genetic programming framework to automate the discovery of zero-cost proxies for neural architecture scoring. Our methodology efficiently discovers an interpretable and generalizable zero-cost proxy that gives state of the art score-accuracy correlation on all datasets and search spaces of NASBench-201 and Network Design Spaces (NDS). We believe that this research indicates a promising direction towards automatically discovering zero-cost proxies that can work across network architecture design spaces, datasets, and tasks.


Improving Robustness and Efficiency in Active Learning with Contrastive Loss

arXiv.org Artificial Intelligence

This paper introduces supervised contrastive active learning (SCAL) by leveraging the contrastive loss for active learning in a supervised setting. We propose efficient query strategies in active learning to select unbiased and informative data samples of diverse feature representations. We demonstrate our proposed method reduces sampling bias, achieves state-of-the-art accuracy and model calibration in an active learning setup with the query computation 11x faster than CoreSet and 26x faster than Bayesian active learning by disagreement. Our method yields well-calibrated models even with imbalanced datasets. We also evaluate robustness to dataset shift and out-of-distribution in active learning setup and demonstrate our proposed SCAL method outperforms high performing compute-intensive methods by a bigger margin (average 8.9% higher AUROC for out-of-distribution detection and average 7.2% lower ECE under dataset shift).