Not enough data to create a plot.
Try a different view from the menu above.
Iyer, Arun
STACKFEED: Structured Textual Actor-Critic Knowledge Base Editing with FeedBack
Gupta, Naman, Kirtania, Shashank, Gupta, Priyanshu, Kariya, Krishna, Gulwani, Sumit, Iyer, Arun, Parthasarathy, Suresh, Radhakrishna, Arjun, Rajamani, Sriram K., Soares, Gustavo
Large Language Models (LLMs) often generate incorrect or outdated information, especially in low-resource settings or when dealing with private data. To address this, Retrieval-Augmented Generation (RAG) uses external knowledge bases (KBs), but these can also suffer from inaccuracies. We introduce STACKFEED, a novel Structured Textual Actor-Critic Knowledge base editing with FEEDback approach that iteratively refines the KB based on expert feedback using a multi-actor, centralized critic reinforcement learning framework. Each document is assigned to an actor, modeled as a ReACT agent, which performs structured edits based on document-specific targeted instructions from a centralized critic. Experimental results show that STACKFEED significantly improves KB quality and RAG system performance, enhancing accuracy by up to 8% over baselines.
Class-Level Code Generation from Natural Language Using Iterative, Tool-Enhanced Reasoning over Repository
Deshpande, Ajinkya, Agarwal, Anmol, Shet, Shashank, Iyer, Arun, Kanade, Aditya, Bairi, Ramakrishna, Parthasarathy, Suresh
LLMs have demonstrated significant potential in code generation tasks, achieving promising results at the function or statement level across various benchmarks. However, the complexities associated with creating code artifacts like classes, particularly within the context of real-world software repositories, remain underexplored. Prior research treats class-level generation as an isolated task, neglecting the intricate dependencies & interactions that characterize real-world software environments. To address this gap, we introduce RepoClassBench, a comprehensive benchmark designed to rigorously evaluate LLMs in generating complex, class-level code within real-world repositories. RepoClassBench includes "Natural Language to Class generation" tasks across Java, Python & C# from a selection of repositories. We ensure that each class in our dataset not only has cross-file dependencies within the repository but also includes corresponding test cases to verify its functionality. We find that current models struggle with the realistic challenges posed by our benchmark, primarily due to their limited exposure to relevant repository contexts. To address this shortcoming, we introduce Retrieve-Repotools-Reflect (RRR), a novel approach that equips LLMs with static analysis tools to iteratively navigate & reason about repository-level context in an agent-based framework. Our experiments demonstrate that RRR significantly outperforms existing baselines on RepoClassBench, showcasing its effectiveness across programming languages & under various settings. Our findings emphasize the critical need for code-generation benchmarks to incorporate repo-level dependencies to more accurately reflect the complexities of software development. Our work shows the benefits of leveraging specialized tools to enhance LLMs' understanding of repository context. We plan to make our dataset & evaluation harness public.
FiGURe: Simple and Efficient Unsupervised Node Representations with Filter Augmentations
Ekbote, Chanakya, Deshpande, Ajinkya Pankaj, Iyer, Arun, Bairi, Ramakrishna, Sellamanickam, Sundararajan
Unsupervised node representations learnt using contrastive learning-based methods have shown good performance on downstream tasks. However, these methods rely on augmentations that mimic low-pass filters, limiting their performance on tasks requiring different eigen-spectrum parts. This paper presents a simple filter-based augmentation method to capture different parts of the eigen-spectrum. We show significant improvements using these augmentations. Further, we show that sharing the same weights across these different filter augmentations is possible, reducing the computational load. In addition, previous works have shown that good performance on downstream tasks requires high dimensional representations. Working with high dimensions increases the computations, especially when multiple augmentations are involved. We mitigate this problem and recover good performance through lower dimensional embeddings using simple random Fourier feature projections. Our method, FiGURe, achieves an average gain of up to 4.4%, compared to the state-of-the-art unsupervised models, across all datasets in consideration, both homophilic and heterophilic.
HeteGCN: Heterogeneous Graph Convolutional Networks for Text Classification
Ragesh, Rahul, Sellamanickam, Sundararajan, Iyer, Arun, Bairi, Ram, Lingam, Vijay
We consider the problem of learning efficient and inductive graph convolutional networks for text classification with a large number of examples and features. Existing state-of-the-art graph embedding based methods such as predictive text embedding (PTE) and TextGCN have shortcomings in terms of predictive performance, scalability and inductive capability. To address these limitations, we propose a heterogeneous graph convolutional network (HeteGCN) modeling approach that unites the best aspects of PTE and TextGCN together. The main idea is to learn feature embeddings and derive document embeddings using a HeteGCN architecture with different graphs used across layers. We simplify TextGCN by dissecting into several HeteGCN models which (a) helps to study the usefulness of individual models and (b) offers flexibility in fusing learned embeddings from different models. In effect, the number of model parameters is reduced significantly, enabling faster training and improving performance in small labeled training set scenario. Our detailed experimental studies demonstrate the efficacy of the proposed approach.