Goto

Collaborating Authors

 Ivo Danihelka


Scaling Memory-Augmented Neural Networks with Sparse Reads and Writes

Neural Information Processing Systems

Neural networks augmented with external memory have the ability to learn algorithmic solutions to complex tasks. These models appear promising for applications such as language modeling and machine translation. However, they scale poorly in both space and time as the amount of memory grows -- limiting their applicability to real-world domains. Here, we present an end-to-end differentiable memory access scheme, which we call Sparse Access Memory (SAM), that retains the representational power of the original approaches whilst training efficiently with very large memories. We show that SAM achieves asymptotic lower bounds in space and time complexity, and find that an implementation runs 1,000 faster and with 3,000 less physical memory than non-sparse models. SAM learns with comparable data efficiency to existing models on a range of synthetic tasks and one-shot Omniglot character recognition, and can scale to tasks requiring 100,000s of time steps and memories. As well, we show how our approach can be adapted for models that maintain temporal associations between memories, as with the recently introduced Differentiable Neural Computer.


Memory-Efficient Backpropagation Through Time

Neural Information Processing Systems

We propose a novel approach to reduce memory consumption of the backpropagation through time (BPTT) algorithm when training recurrent neural networks (RNNs). Our approach uses dynamic programming to balance a trade-off between caching of intermediate results and recomputation. The algorithm is capable of tightly fitting within almost any user-set memory budget while finding an optimal execution policy minimizing the computational cost. Computational devices have limited memory capacity and maximizing a computational performance given a fixed memory budget is a practical use-case. We provide asymptotic computational upper bounds for various regimes. The algorithm is particularly effective for long sequences. For sequences of length 1000, our algorithm saves 95% of memory usage while using only one third more time per iteration than the standard BPTT.


Towards Conceptual Compression

Neural Information Processing Systems

We introduce convolutional DRAW, a homogeneous deep generative model achieving state-of-the-art performance in latent variable image modeling. The algorithm naturally stratifies information into higher and lower level details, creating abstract features and as such addressing one of the fundamentally desired properties of representation learning. Furthermore, the hierarchical ordering of its latents creates the opportunity to selectively store global information about an image, yielding a high quality'conceptual compression' framework.