Ittichaiwong, Piyalitt
Crowdsource, Crawl, or Generate? Creating SEA-VL, a Multicultural Vision-Language Dataset for Southeast Asia
Cahyawijaya, Samuel, Lovenia, Holy, Moniz, Joel Ruben Antony, Wong, Tack Hwa, Farhansyah, Mohammad Rifqi, Maung, Thant Thiri, Hudi, Frederikus, Anugraha, David, Habibi, Muhammad Ravi Shulthan, Qorib, Muhammad Reza, Agarwal, Amit, Imperial, Joseph Marvin, Patel, Hitesh Laxmichand, Feliren, Vicky, Nasution, Bahrul Ilmi, Rufino, Manuel Antonio, Winata, Genta Indra, Rajagede, Rian Adam, Catalan, Carlos Rafael, Imam, Mohamed Fazli, Pattnayak, Priyaranjan, Pranida, Salsabila Zahirah, Pratama, Kevin, Bangera, Yeshil, Na-Thalang, Adisai, Monderin, Patricia Nicole, Song, Yueqi, Simon, Christian, Ng, Lynnette Hui Xian, Sapan, Richardy Lobo', Rafi, Taki Hasan, Wang, Bin, Supryadi, null, Veerakanjana, Kanyakorn, Ittichaiwong, Piyalitt, Roque, Matthew Theodore, Vincentio, Karissa, Kreangphet, Takdanai, Artkaew, Phakphum, Palgunadi, Kadek Hendrawan, Yu, Yanzhi, Hastuti, Rochana Prih, Nixon, William, Bangera, Mithil, Lim, Adrian Xuan Wei, Khine, Aye Hninn, Zhafran, Hanif Muhammad, Ferdinan, Teddy, Izzani, Audra Aurora, Singh, Ayushman, Evan, null, Krito, Jauza Akbar, Anugraha, Michael, Ilasariya, Fenal Ashokbhai, Li, Haochen, Daniswara, John Amadeo, Tjiaranata, Filbert Aurelian, Yulianrifat, Eryawan Presma, Udomcharoenchaikit, Can, Ansori, Fadil Risdian, Ihsani, Mahardika Krisna, Nguyen, Giang, Barik, Anab Maulana, Velasco, Dan John, Genadi, Rifo Ahmad, Saha, Saptarshi, Wei, Chengwei, Flores, Isaiah, Chen, Kenneth Ko Han, Santos, Anjela Gail, Lim, Wan Shen, Phyo, Kaung Si, Santos, Tim, Dwiastuti, Meisyarah, Luo, Jiayun, Cruz, Jan Christian Blaise, Hee, Ming Shan, Hanif, Ikhlasul Akmal, Hakim, M. Alif Al, Sya'ban, Muhammad Rizky, Kerdthaisong, Kun, Miranda, Lester James V., Koto, Fajri, Fatyanosa, Tirana Noor, Aji, Alham Fikri, Rosal, Jostin Jerico, Kevin, Jun, Wijaya, Robert, Kampman, Onno P., Zhang, Ruochen, Karlsson, Bรถrje F., Limkonchotiwat, Peerat
Southeast Asia (SEA) is a region of extraordinary linguistic and cultural diversity, yet it remains significantly underrepresented in vision-language (VL) research. This often results in artificial intelligence (AI) models that fail to capture SEA cultural nuances. To fill this gap, we present SEA-VL, an open-source initiative dedicated to developing high-quality, culturally relevant data for SEA languages. By involving contributors from SEA countries, SEA-VL aims to ensure better cultural relevance and diversity, fostering greater inclusivity of underrepresented languages in VL research. Beyond crowdsourcing, our initiative goes one step further in the exploration of the automatic collection of culturally relevant images through crawling and image generation. First, we find that image crawling achieves approximately ~85% cultural relevance while being more cost- and time-efficient than crowdsourcing. Second, despite the substantial progress in generative vision models, synthetic images remain unreliable in accurately reflecting SEA cultures. The generated images often fail to reflect the nuanced traditions and cultural contexts of the region. Collectively, we gather 1.28M SEA culturally-relevant images, more than 50 times larger than other existing datasets. Through SEA-VL, we aim to bridge the representation gap in SEA, fostering the development of more inclusive AI systems that authentically represent diverse cultures across SEA.
Can General-Purpose Large Language Models Generalize to English-Thai Machine Translation ?
Chiaranaipanich, Jirat, Hanmatheekuna, Naiyarat, Sawatphol, Jitkapat, Tiankanon, Krittamate, Kinchagawat, Jiramet, Chinkamol, Amrest, Pengpun, Parinthapat, Ittichaiwong, Piyalitt, Limkonchotiwat, Peerat
Large language models (LLMs) perform well on common tasks but struggle with generalization in low-resource and low-computation settings. We examine this limitation by testing various LLMs and specialized translation models on English-Thai machine translation and code-switching datasets. Our findings reveal that under more strict computational constraints, such as 4-bit quantization, LLMs fail to translate effectively. In contrast, specialized models, with comparable or lower computational requirements, consistently outperform LLMs. This underscores the importance of specialized models for maintaining performance under resource constraints.
On Creating an English-Thai Code-switched Machine Translation in Medical Domain
Pengpun, Parinthapat, Tiankanon, Krittamate, Chinkamol, Amrest, Kinchagawat, Jiramet, Chairuengjitjaras, Pitchaya, Supholkhan, Pasit, Aussavavirojekul, Pubordee, Boonnag, Chiraphat, Veerakanjana, Kanyakorn, Phimsiri, Hirunkul, Sae-jia, Boonthicha, Sataudom, Nattawach, Ittichaiwong, Piyalitt, Limkonchotiwat, Peerat
Machine translation (MT) in the medical domain plays a pivotal role in enhancing healthcare quality and disseminating medical knowledge. Despite advancements in English-Thai MT technology, common MT approaches often underperform in the medical field due to their inability to precisely translate medical terminologies. Our research prioritizes not merely improving translation accuracy but also maintaining medical terminology in English within the translated text through code-switched (CS) translation. We developed a method to produce CS medical translation data, fine-tuned a CS translation model with this data, and evaluated its performance against strong baselines, such as Google Neural Machine Translation (NMT) and GPT-3.5/GPT-4. Our model demonstrated competitive performance in automatic metrics and was highly favored in human preference evaluations. Our evaluation result also shows that medical professionals significantly prefer CS translations that maintain critical English terms accurately, even if it slightly compromises fluency. Our code and test set are publicly available https://github.com/preceptorai-org/NLLB_CS_EM_NLP2024.
PseudoCell: Hard Negative Mining as Pseudo Labeling for Deep Learning-Based Centroblast Cell Detection
Seesawad, Narongrid, Ittichaiwong, Piyalitt, Sudhawiyangkul, Thapanun, Sawangjai, Phattarapong, Thuwajit, Peti, Boonsakan, Paisarn, Sripodok, Supasan, Veerakanjana, Kanyakorn, Luenam, Phoomraphee, Charngkaew, Komgrid, Pongpaibul, Ananya, Angkathunyakul, Napat, Hnoohom, Narit, Yuenyong, Sumeth, Thuwajit, Chanitra, Wilaiprasitporn, Theerawit
Patch classification models based on deep learning have been utilized in whole-slide images (WSI) of H&E-stained tissue samples to assist pathologists in grading follicular lymphoma patients. However, these approaches still require pathologists to manually identify centroblast cells and provide refined labels for optimal performance. To address this, we propose PseudoCell, an object detection framework to automate centroblast detection in WSI (source code is available at https://github.com/IoBT-VISTEC/PseudoCell.git). This framework incorporates centroblast labels from pathologists and combines them with pseudo-negative labels obtained from undersampled false-positive predictions using the cell's morphological features. By employing PseudoCell, pathologists' workload can be reduced as it accurately narrows down the areas requiring their attention during examining tissue. Depending on the confidence threshold, PseudoCell can eliminate 58.18-99.35% of non-centroblasts tissue areas on WSI. This study presents a practical centroblast prescreening method that does not require pathologists' refined labels for improvement. Detailed guidance on the practical implementation of PseudoCell is provided in the discussion section.