Islam, Raima
GReFEL: Geometry-Aware Reliable Facial Expression Learning under Bias and Imbalanced Data Distribution
Wasi, Azmine Toushik, Rafi, Taki Hasan, Islam, Raima, Serbetar, Karlo, Chae, Dong Kyu
Reliable facial expression learning (FEL) involves the effective learning of distinctive facial expression characteristics for more reliable, unbiased and accurate predictions in real-life settings. However, current systems struggle with FEL tasks because of the variance in people's facial expressions due to their unique facial structures, movements, tones, and demographics. Biased and imbalanced datasets compound this challenge, leading to wrong and biased prediction labels. To tackle these, we introduce GReFEL, leveraging Vision Transformers and a facial geometry-aware anchor-based reliability balancing module to combat imbalanced data distributions, bias, and uncertainty in facial expression learning. Integrating local and global data with anchors that learn different facial data points and structural features, our approach adjusts biased and mislabeled emotions caused by intra-class disparity, inter-class similarity, and scale sensitivity, resulting in comprehensive, accurate, and reliable facial expression predictions. Our model outperforms current state-of-the-art methodologies, as demonstrated by extensive experiments on various datasets.
BanglaAutoKG: Automatic Bangla Knowledge Graph Construction with Semantic Neural Graph Filtering
Wasi, Azmine Toushik, Rafi, Taki Hasan, Islam, Raima, Chae, Dong-Kyu
Knowledge Graphs (KGs) have proven essential in information processing and reasoning applications because they link related entities and give context-rich information, supporting efficient information retrieval and knowledge discovery; presenting information flow in a very effective manner. Despite being widely used globally, Bangla is relatively underrepresented in KGs due to a lack of comprehensive datasets, encoders, NER (named entity recognition) models, POS (part-of-speech) taggers, and lemmatizers, hindering efficient information processing and reasoning applications in the language. Addressing the KG scarcity in Bengali, we propose BanglaAutoKG, a pioneering framework that is able to automatically construct Bengali KGs from any Bangla text. We utilize multilingual LLMs to understand various languages and correlate entities and relations universally. By employing a translation dictionary to identify English equivalents and extracting word features from pre-trained BERT models, we construct the foundational KG. To reduce noise and align word embeddings with our goal, we employ graph-based polynomial filters. Lastly, we implement a GNN-based semantic filter, which elevates contextual understanding and trims unnecessary edges, culminating in the formation of the definitive KG. Empirical findings and case studies demonstrate the universal effectiveness of our model, capable of autonomously constructing semantically enriched KGs from any text.
Ink and Individuality: Crafting a Personalised Narrative in the Age of LLMs
Wasi, Azmine Toushik, Islam, Raima, Islam, Mst Rafia
Individuality and personalization comprise the distinctive characteristics that make each writer unique and influence their words in order to effectively engage readers while conveying authenticity. However, our growing reliance on LLM-based writing assistants risks compromising our creativity and individuality over time. We often overlook the negative impacts of this trend on our creativity and uniqueness, despite the possible consequences. This study investigates these concerns by performing a brief survey to explore different perspectives and concepts, as well as trying to understand people's viewpoints, in conjunction with past studies in the area. Addressing these issues is essential for improving human-computer interaction systems and enhancing writing assistants for personalization and individuality.
LLMs as Writing Assistants: Exploring Perspectives on Sense of Ownership and Reasoning
Wasi, Azmine Toushik, Islam, Mst Rafia, Islam, Raima
Sense of ownership in writing confines our investment of thoughts, time, and contribution, leading to attachment to the output. However, using writing assistants introduces a mental dilemma, as some content isn't directly our creation. For instance, we tend to credit Large Language Models (LLMs) more in creative tasks, even though all tasks are equal for them. Additionally, while we may not claim complete ownership of LLM-generated content, we freely claim authorship. We conduct a short survey to examine these issues and understand underlying cognitive processes in order to gain a better knowledge of human-computer interaction in writing and improve writing aid systems.
CADGL: Context-Aware Deep Graph Learning for Predicting Drug-Drug Interactions
Wasi, Azmine Toushik, Rafi, Taki Hasan, Islam, Raima, Karlo, Serbetar, Chae, Dong-Kyu
Examining Drug-Drug Interactions (DDIs) is a pivotal element in the process of drug development. DDIs occur when one drug's properties are affected by the inclusion of other drugs. Detecting favorable DDIs has the potential to pave the way for creating and advancing innovative medications applicable in practical settings. However, existing DDI prediction models continue to face challenges related to generalization in extreme cases, robust feature extraction, and real-life application possibilities. We aim to address these challenges by leveraging the effectiveness of context-aware deep graph learning by introducing a novel framework named CADGL. Based on a customized variational graph autoencoder (VGAE), we capture critical structural and physio-chemical information using two context preprocessors for feature extraction from two different perspectives: local neighborhood and molecular context, in a heterogeneous graphical structure. Our customized VGAE consists of a graph encoder, a latent information encoder, and an MLP decoder. CADGL surpasses other state-of-the-art DDI prediction models, excelling in predicting clinically valuable novel DDIs, supported by rigorous case studies.
When SMILES have Language: Drug Classification using Text Classification Methods on Drug SMILES Strings
Wasi, Azmine Toushik, Karlo, Šerbetar, Islam, Raima, Rafi, Taki Hasan, Chae, Dong-Kyu
Complex chemical structures, like drugs, are usually defined by SMILES strings as a sequence of molecules and bonds. These SMILES strings are used in different complex machine learning-based drug-related research and representation works. Escaping from complex representation, in this work, we pose a single question: What if we treat drug SMILES as conventional sentences and engage in text classification for drug classification? The study explores the notion of viewing each atom and bond as sentence components, employing basic NLP methods to categorize drug types, proving that complex problems can also be solved with simpler perspectives. Classifying drug types plays a pivotal role in drug discovery research, aiding in the categorization of established drugs and enhancing our understanding of the distinctive features of newly identified or synthesized drugs.
Uncovering local aggregated air quality index with smartphone captured images leveraging efficient deep convolutional neural network
Mondal, Joyanta Jyoti, Islam, Md. Farhadul, Islam, Raima, Rhidi, Nowsin Kabir, Newaz, Sarfaraz, Manab, Meem Arafat, Islam, A. B. M. Alim Al, Noor, Jannatun
The prevalence and mobility of smartphones make these a widely used tool for environmental health research. However, their potential for determining aggregated air quality index (AQI) based on PM2.5 concentration in specific locations remains largely unexplored in the existing literature. In this paper, we thoroughly examine the challenges associated with predicting location-specific PM2.5 concentration using images taken with smartphone cameras. The focus of our study is on Dhaka, the capital of Bangladesh, due to its significant air pollution levels and the large population exposed to it. Our research involves the development of a Deep Convolutional Neural Network (DCNN), which we train using over a thousand outdoor images taken and annotated. These photos are captured at various locations in Dhaka, and their labels are based on PM2.5 concentration data obtained from the local US consulate, calculated using the NowCast algorithm. Through supervised learning, our model establishes a correlation index during training, enhancing its ability to function as a Picture-based Predictor of PM2.5 Concentration (PPPC). This enables the algorithm to calculate an equivalent daily averaged AQI index from a smartphone image. Unlike, popular overly parameterized models, our model shows resource efficiency since it uses fewer parameters. Furthermore, test results indicate that our model outperforms popular models like ViT and INN, as well as popular CNN-based models such as VGG19, ResNet50, and MobileNetV2, in predicting location-specific PM2.5 concentration. Our dataset is the first publicly available collection that includes atmospheric images and corresponding PM2.5 measurements from Dhaka. Our codes and dataset are available at https://github.com/lepotatoguy/aqi.
ARBEx: Attentive Feature Extraction with Reliability Balancing for Robust Facial Expression Learning
Wasi, Azmine Toushik, Šerbetar, Karlo, Islam, Raima, Rafi, Taki Hasan, Chae, Dong-Kyu
In this paper, we introduce a framework ARBEx, a novel attentive feature extraction framework driven by Vision Transformer with reliability balancing to cope against poor class distributions, bias, and uncertainty in the facial expression learning (FEL) task. We reinforce several data pre-processing and refinement methods along with a window-based cross-attention ViT to squeeze the best of the data. We also employ learnable anchor points in the embedding space with label distributions and multi-head self-attention mechanism to optimize performance against weak predictions with reliability balancing, which is a strategy that leverages anchor points, attention scores, and confidence values to enhance the resilience of label predictions. To ensure correct label classification and improve the models' discriminative power, we introduce anchor loss, which encourages large margins between anchor points. Additionally, the multi-head self-attention mechanism, which is also trainable, plays an integral role in identifying accurate labels. This approach provides critical elements for improving the reliability of predictions and has a substantial positive effect on final prediction capabilities. Our adaptive model can be integrated with any deep neural network to forestall challenges in various recognition tasks. Our strategy outperforms current state-of-the-art methodologies, according to extensive experiments conducted in a variety of contexts.