Goto

Collaborating Authors

 Islam, Mohammad Raihanul


SIGNet: Scalable Embeddings for Signed Networks

arXiv.org Machine Learning

Recent successes in word embedding and document embedding have motivated researchers to explore similar representations for networks and to use such representations for tasks such as edge prediction, node label prediction, and community detection. Such network embedding methods are largely focused on finding distributed representations for unsigned networks and are unable to discover embeddings that respect polarities inherent in edges. We propose SIGNet, a fast scalable embedding method suitable for signed networks. Our proposed objective function aims to carefully model the social structure implicit in signed networks by reinforcing the principles of social balance theory. Our method builds upon the traditional word2vec family of embedding approaches and adds a new targeted node sampling strategy to maintain structural balance in higher-order neighborhoods. We demonstrate the superiority of SIGNet over state-of-the-art methods proposed for both signed and unsigned networks on several real world datasets from different domains. In particular, SIGNet offers an approach to generate a richer vocabulary of features of signed networks to support representation and reasoning.


Inferring Multi-Dimensional Ideal Points for US Supreme Court Justices

AAAI Conferences

In Supreme Court parlance and the political science literature, an ideal point positions a justice in a continuous space and can be interpreted as a quantification of the justice's policy preferences. We present an automated approach to infer such ideal points for justices of the US Supreme Court. This approach combines topic modeling over case opinions with the voting (and endorsing) behavior of justices. Furthermore, given a topic of interest, say the Fourth Amendment, the topic model can be optionally seeded with supervised information to steer the inference of ideal points. Application of this methodology over five years of cases provides interesting perspectives into the leaning of justices on crucial issues, coalitions underlying specific topics, and the role of swing justices in deciding the outcomes of cases.


Interactive Storytelling over Document Collections

arXiv.org Machine Learning

Storytelling algorithms aim to 'connect the dots' between disparate documents by linking starting and ending documents through a series of intermediate documents. Existing storytelling algorithms are based on notions of coherence and connectivity, and thus the primary way by which users can steer the story construction is via design of suitable similarity functions. We present an alternative approach to storytelling wherein the user can interactively and iteratively provide 'must use' constraints to preferentially support the construction of some stories over others. The three innovations in our approach are distance measures based on (inferred) topic distributions, the use of constraints to define sets of linear inequalities over paths, and the introduction of slack and surplus variables to condition the topic distribution to preferentially emphasize desired terms over others. We describe experimental results to illustrate the effectiveness of our interactive storytelling approach over multiple text datasets.