Islam, Md Zahidul
Learning-based estimation of cattle weight gain and its influencing factors
Hossain, Muhammad Riaz Hasib, Islam, Rafiqul, McGrath, Shawn R., Islam, Md Zahidul, Lamb, David
Many cattle farmers still depend on manual methods to measure the live weight gain of cattle at set intervals, which is time consuming, labour intensive, and stressful for both the animals and handlers. A remote and autonomous monitoring system using machine learning (ML) or deep learning (DL) can provide a more efficient and less invasive method and also predictive capabilities for future cattle weight gain (CWG). This system allows continuous monitoring and estimation of individual cattle live weight gain, growth rates and weight fluctuations considering various factors like environmental conditions, genetic predispositions, feed availability, movement patterns and behaviour. Several researchers have explored the efficiency of estimating CWG using ML and DL algorithms. However, estimating CWG suffers from a lack of consistency in its application. Moreover, ML or DL can provide weight gain estimations based on several features that vary in existing research. Additionally, previous studies have encountered various data related challenges when estimating CWG. This paper presents a comprehensive investigation in estimating CWG using advanced ML techniques based on research articles (between 2004 and 2024). This study investigates the current tools, methods, and features used in CWG estimation, as well as their strengths and weaknesses. The findings highlight the significance of using advanced ML approaches in CWG estimation and its critical influence on factors. Furthermore, this study identifies potential research gaps and provides research direction on CWG prediction, which serves as a reference for future research in this area.
CL3: A Collaborative Learning Framework for the Medical Data Ensuring Data Privacy in the Hyperconnected Environment
Parvez, Mohamamd Zavid, Islam, Rafiqul, Islam, Md Zahidul
In a hyperconnected environment, medical institutions are particularly concerned with data privacy when sharing and transmitting sensitive patient information due to the risk of data breaches, where malicious actors could intercept sensitive information. A collaborative learning framework, including transfer, federated, and incremental learning, can generate efficient, secure, and scalable models while requiring less computation, maintaining patient data privacy, and ensuring an up-to-date model. This study aims to address the detection of COVID-19 using chest X-ray images through a proposed collaborative learning framework called CL3. Initially, transfer learning is employed, leveraging knowledge from a pre-trained model as the starting global model. Local models from different medical institutes are then integrated, and a new global model is constructed to adapt to any data drift observed in the local models. Additionally, incremental learning is considered, allowing continuous adaptation to new medical data without forgetting previously learned information. Experimental results demonstrate that the CL3 framework achieved a global accuracy of 89.99% when using Xception with a batch size of 16 after being trained for six federated communication rounds. A demo of the CL3 framework is available at https://github.com/zavidparvez/CL3-Collaborative-Approach to ensure reproducibility.
Enhancing Semantic Segmentation with Adaptive Focal Loss: A Novel Approach
Islam, Md Rakibul, Hassan, Riad, Nazib, Abdullah, Nguyen, Kien, Fookes, Clinton, Islam, Md Zahidul
Deep learning has achieved outstanding accuracy in medical image segmentation, particularly for objects like organs or tumors with smooth boundaries or large sizes. Whereas, it encounters significant difficulties with objects that have zigzag boundaries or are small in size, leading to a notable decrease in segmentation effectiveness. In this context, using a loss function that incorporates smoothness and volume information into a model's predictions offers a promising solution to these shortcomings. In this work, we introduce an Adaptive Focal Loss (A-FL) function designed to mitigate class imbalance by down-weighting the loss for easy examples that results in up-weighting the loss for hard examples and giving greater emphasis to challenging examples, such as small and irregularly shaped objects. The proposed A-FL involves dynamically adjusting a focusing parameter based on an object's surface smoothness, size information, and adjusting the class balancing parameter based on the ratio of targeted area to total area in an image. We evaluated the performance of the A-FL using ResNet50-encoded U-Net architecture on the Picai 2022 and BraTS 2018 datasets. On the Picai 2022 dataset, the A-FL achieved an Intersection over Union (IoU) of 0.696 and a Dice Similarity Coefficient (DSC) of 0.769, outperforming the regular Focal Loss (FL) by 5.5% and 5.4% respectively. It also surpassed the best baseline Dice-Focal by 2.0% and 1.2%. On the BraTS 2018 dataset, A-FL achieved an IoU of 0.883 and a DSC of 0.931. The comparative studies show that the proposed A-FL function surpasses conventional methods, including Dice Loss, Focal Loss, and their hybrid variants, in IoU, DSC, Sensitivity, and Specificity metrics. This work highlights A-FL's potential to improve deep learning models for segmenting clinically significant regions in medical images, leading to more precise and reliable diagnostic tools.
Seizure detection from Electroencephalogram signals via Wavelets and Graph Theory metrics
Grant, Paul, Islam, Md Zahidul
Epilepsy is one of the most prevalent neurological conditions, where an epileptic seizure is a transient occurrence due to abnormal, excessive and synchronous activity in the brain. Electroencephalogram signals emanating from the brain may be captured, analysed and then play a significant role in detection and prediction of epileptic seizures. In this work we enhance upon a previous approach that relied on the differing properties of the wavelet transform. Here we apply the Maximum Overlap Discrete Wavelet Transform to both reduce signal \textit{noise} and use signal variance exhibited at differing inherent frequency levels to develop various metrics of connection between the electrodes placed upon the scalp. %The properties of both the noise reduced signal and the interconnected electrodes differ significantly during the different brain states. Using short duration epochs, to approximate close to real time monitoring, together with simple statistical parameters derived from the reconstructed noise reduced signals we initiate seizure detection. To further improve performance we utilise graph theoretic indicators from derived electrode connectivity. From there we build the attribute space. We utilise open-source software and publicly available data to highlight the superior Recall/Sensitivity performance of our approach, when compared to existing published methods.
Enhancing Cluster Quality of Numerical Datasets with Domain Ontology
Heiyanthuduwage, Sudath Rohitha, Rahman, Md Anisur, Islam, Md Zahidul
Ontology-based clustering has gained attention in recent years due to the potential benefits of ontology. Current ontology-based clustering approaches have mainly been applied to reduce the dimensionality of attributes in text document clustering. Reduction in dimensionality of attributes using ontology helps to produce high quality clusters for a dataset. However, ontology-based approaches in clustering numerical datasets have not been gained enough attention. Moreover, some literature mentions that ontology-based clustering can produce either high quality or low-quality clusters from a dataset. Therefore, in this paper we present a clustering approach that is based on domain ontology to reduce the dimensionality of attributes in a numerical dataset using domain ontology and to produce high quality clusters. For every dataset, we produce three datasets using domain ontology. We then cluster these datasets using a genetic algorithm-based clustering technique called GenClust++. The clusters of each dataset are evaluated in terms of Sum of Squared-Error (SSE). We use six numerical datasets to evaluate the performance of our ontology-based approach. The experimental results of our approach indicate that cluster quality gradually improves from lower to the higher levels of a domain ontology.
Signal Classification using Smooth Coefficients of Multiple wavelets
Grant, Paul, Islam, Md Zahidul
Classification of time series signals has become an important construct and has many practical applications. With existing classifiers we may be able to accurately classify signals, however that accuracy may decline if using a reduced number of attributes. Transforming the data then undertaking reduction in dimensionality may improve the quality of the data analysis, decrease time required for classification and simplify models. We propose an approach, which chooses suitable wavelets to transform the data, then combines the output from these transforms to construct a dataset to then apply ensemble classifiers to. We demonstrate this on different data sets, across different classifiers and use differing evaluation methods. Our experimental results demonstrate the effectiveness of the proposed technique, compared to the approaches that use either raw signal data or a single wavelet transform.
A Framework for Supervised Heterogeneous Transfer Learning using Dynamic Distribution Adaptation and Manifold Regularization
Rahman, Md Geaur, Islam, Md Zahidul
Transfer learning aims to learn classifiers for a target domain by transferring knowledge from a source domain. However, due to two main issues: feature discrepancy and distribution divergence, transfer learning can be a very difficult problem in practice. In this paper, we present a framework called TLF that builds a classifier for the target domain having only few labeled training records by transferring knowledge from the source domain having many labeled records. While existing methods often focus on one issue and leave the other one for the further work, TLF is capable of handling both issues simultaneously. In TLF, we alleviate feature discrepancy by identifying shared label distributions that act as the pivots to bridge the domains. We handle distribution divergence by simultaneously optimizing the structural risk functional, joint distributions between domains, and the manifold consistency underlying marginal distributions. Moreover, for the manifold consistency we exploit its intrinsic properties by identifying k nearest neighbors of a record, where the value of k is determined automatically in TLF. Furthermore, since negative transfer is not desired, we consider only the source records that are belonging to the source pivots during the knowledge transfer. We evaluate TLF on seven publicly available natural datasets and compare the performance of TLF against the performance of eleven state-of-the-art techniques. We also evaluate the effectiveness of TLF in some challenging situations. Our experimental results, including statistical sign test and Nemenyi test analyses, indicate a clear superiority of the proposed framework over the state-of-the-art techniques.
Detecting Autism Spectrum Disorder using Machine Learning
Hossain, Md Delowar, Kabir, Muhammad Ashad, Anwar, Adnan, Islam, Md Zahidul
Autism Spectrum Disorder (ASD), which is a neuro development disorder, is often accompanied by sensory issues such an over sensitivity or under sensitivity to sounds and smells or touch. Although its main cause is genetics in nature, early detection and treatment can help to improve the conditions. In recent years, machine learning based intelligent diagnosis has been evolved to complement the traditional clinical methods which can be time consuming and expensive. The focus of this paper is to find out the most significant traits and automate the diagnosis process using available classification techniques for improved diagnosis purpose. We have analyzed ASD datasets of Toddler, Child, Adolescent and Adult. We determine the best performing classifier for these binary datasets using the evaluation metrics recall, precision, F-measures and classification errors. Our finding shows that Sequential minimal optimization (SMO) based Support Vector Machines (SVM) classifier outperforms all other benchmark machine learning algorithms in terms of accuracy during the detection of ASD cases and produces less classification errors compared to other algorithms. Also, we find that Relief Attributes algorithm is the best to identify the most significant attributes in ASD datasets.
DataLearner: A Data Mining and Knowledge Discovery Tool for Android Smartphones and Tablets
Yates, Darren, Islam, Md Zahidul, Gao, Junbin
Smartphones have become the ultimate 'personal' computer, yet despite this, general-purpose data-mining and knowledge discovery tools for mobile devices are surprisingly rare. DataLearner is a new data-mining application designed specifically for Android devices that imports the Weka data-mining engine and augments it with algorithms developed by Charles Sturt University. Moreover, DataLearner can be expanded with additional algorithms. Combined, DataLearner delivers 40 classification, clustering and association rule mining algorithms for model training and evaluation without need for cloud computing resources or network connectivity. It provides the same classification accuracy as PCs and laptops, while doing so with acceptable processing speed and consuming negligible battery life. With its ability to provide easy-to-use data-mining on a phone-size screen, DataLearner is a new portable, self-contained data-mining tool for remote, personalised and learning applications alike. DataLearner features four elements - this paper, the app available on Google Play, the GPL3-licensed source code on GitHub and a short video on YouTube.