Goto

Collaborating Authors

 Islam, Md Saiful


BnTTS: Few-Shot Speaker Adaptation in Low-Resource Setting

arXiv.org Artificial Intelligence

This paper introduces BnTTS (Bangla Text-To-Speech), the first framework for Bangla speaker adaptation-based TTS, designed to bridge the gap in Bangla speech synthesis using minimal training data. Building upon the XTTS architecture, our approach integrates Bangla into a multilingual TTS pipeline, with modifications to account for the phonetic and linguistic characteristics of the language. We pre-train BnTTS on 3.85k hours of Bangla speech dataset with corresponding text labels and evaluate performance in both zero-shot and few-shot settings on our proposed test dataset. Empirical evaluations in few-shot settings show that BnTTS significantly improves the naturalness, intelligibility, and speaker fidelity of synthesized Bangla speech. Compared to state-of-the-art Bangla TTS systems, BnTTS exhibits superior performance in Subjective Mean Opinion Score (SMOS), Naturalness, and Clarity metrics.


Explainable AI for Sentiment Analysis of Human Metapneumovirus (HMPV) Using XLNet

arXiv.org Artificial Intelligence

In 2024, the outbreak of Human Metapneumovirus (HMPV) in China, which later spread to the UK and other countries, raised significant public concern. While HMPV typically causes mild symptoms, its effects on vulnerable individuals prompted health authorities to emphasize preventive measures. This paper explores how sentiment analysis can enhance our understanding of public reactions to HMPV by analyzing social media data. We apply transformer models, particularly XLNet, achieving 93.50% accuracy in sentiment classification. Additionally, we use explainable AI (XAI) through SHAP to improve model transparency.


LuxVeri at GenAI Detection Task 1: Inverse Perplexity Weighted Ensemble for Robust Detection of AI-Generated Text across English and Multilingual Contexts

arXiv.org Artificial Intelligence

The rapid advancement of language models such as This paper presents a robust ensemble approach GPT (Radford et al., 2019) and BERT (Devlin et al., for detecting AI-generated content, with strong 2019) has increased machine-generated content, performance across both English and multilingual raising significant concerns about misinformation tasks. However, significant opportunities remain and academic integrity. Identifying AI-generated for improving model generalization and addressing text becomes more challenging in multilingual contexts, data imbalance, which will be crucial for future where linguistic diversity adds further complexity advancements in this field. The following sections to model generalization. While existing will discuss the dataset, methodology, results, a approaches perform well in English, their effectiveness detailed analysis of the findings, and conclusions decreases when applied to languages with drawn from this study.


LuxVeri at GenAI Detection Task 3: Cross-Domain Detection of AI-Generated Text Using Inverse Perplexity-Weighted Ensemble of Fine-Tuned Transformer Models

arXiv.org Artificial Intelligence

This paper presents our approach for Task 3 of the GenAI content detection workshop at COLING-2025, focusing on Cross-Domain Machine-Generated Text (MGT) Detection. We propose an ensemble of fine-tuned transformer models, enhanced by inverse perplexity weighting, to improve classification accuracy across diverse text domains. For Subtask A (Non-Adversarial MGT Detection), we combined a fine-tuned RoBERTa-base model with an OpenAI detector-integrated RoBERTa-base model, achieving an aggregate TPR score of 0.826, ranking 10th out of 23 detectors. In Subtask B (Adversarial MGT Detection), our fine-tuned RoBERTa-base model achieved a TPR score of 0.801, securing 8th out of 22 detectors. Our results demonstrate the effectiveness of inverse perplexity-based weighting for enhancing generalization and performance in both non-adversarial and adversarial MGT detection, highlighting the potential for transformer models in cross-domain AI-generated content detection.


Accessible, At-Home Detection of Parkinson's Disease via Multi-task Video Analysis

arXiv.org Artificial Intelligence

Limited access to neurological care leads to missed diagnoses of Parkinson's disease (PD), leaving many individuals unidentified and untreated. We trained a novel neural network-based fusion architecture to detect Parkinson's disease (PD) by analyzing features extracted from webcam recordings of three tasks: finger tapping, facial expression (smiling), and speech (uttering a sentence containing all letters of the alphabet). Additionally, the model incorporated Monte Carlo Dropout to improve prediction accuracy by considering uncertainties. The study participants (n = 845, 272 with PD) were randomly split into three sets: 60% for training, 20% for model selection (hyper-parameter tuning), and 20% for final performance evaluation. The dataset consists of 1102 sessions, each session containing videos of all three tasks. Our proposed model achieved significantly better accuracy, area under the ROC curve (AUROC), and sensitivity at non-inferior specificity compared to any single-task model. Withholding uncertain predictions further boosted the performance, achieving 88.0% (95% CI: 87.7% - 88.4%) accuracy, 93.0% (92.8% - 93.2%) AUROC, 79.3% (78.4% - 80.2%) sensitivity, and 92.6% (92.3% - 92.8%) specificity, at the expense of not being able to predict for 2.3% (2.0% - 2.6%) data. Further analysis suggests that the trained model does not exhibit any detectable bias across sex and ethnic subgroups and is most effective for individuals aged between 50 and 80. This accessible, low-cost approach requiring only an internet-enabled device with a webcam and microphone paves the way for convenient PD screening at home, particularly in regions with limited access to clinical specialists.


Authorship Attribution in Bangla Literature (AABL) via Transfer Learning using ULMFiT

arXiv.org Artificial Intelligence

Authorship Attribution is the task of creating an appropriate characterization of text that captures the authors' writing style to identify the original author of a given piece of text. With increased anonymity on the internet, this task has become increasingly crucial in various security and plagiarism detection fields. Despite significant advancements in other languages such as English, Spanish, and Chinese, Bangla lacks comprehensive research in this field due to its complex linguistic feature and sentence structure. Moreover, existing systems are not scalable when the number of author increases, and the performance drops for small number of samples per author. In this paper, we propose the use of Average-Stochastic Gradient Descent Weight-Dropped Long Short-Term Memory (AWD-LSTM) architecture and an effective transfer learning approach that addresses the problem of complex linguistic features extraction and scalability for authorship attribution in Bangla Literature (AABL). We analyze the effect of different tokenization, such as word, sub-word, and character level tokenization, and demonstrate the effectiveness of these tokenizations in the proposed model. Moreover, we introduce the publicly available Bangla Authorship Attribution Dataset of 16 authors (BAAD16) containing 17,966 sample texts and 13.4+ million words to solve the standard dataset scarcity problem and release six variations of pre-trained language models for use in any Bangla NLP downstream task. For evaluation, we used our developed BAAD16 dataset as well as other publicly available datasets. Empirically, our proposed model outperformed state-of-the-art models and achieved 99.8% accuracy in the BAAD16 dataset. Furthermore, we showed that the proposed system scales much better even with an increasing number of authors, and performance remains steady despite few training samples.


Human-AI Collaboration in Real-World Complex Environment with Reinforcement Learning

arXiv.org Artificial Intelligence

Recent advances in reinforcement learning (RL) and Human-in-the-Loop (HitL) learning have made human-AI collaboration easier for humans to team with AI agents. Leveraging human expertise and experience with AI in intelligent systems can be efficient and beneficial. Still, it is unclear to what extent human-AI collaboration will be successful, and how such teaming performs compared to humans or AI agents only. In this work, we show that learning from humans is effective and that human-AI collaboration outperforms human-controlled and fully autonomous AI agents in a complex simulation environment. In addition, we have developed a new simulator for critical infrastructure protection, focusing on a scenario where AI-powered drones and human teams collaborate to defend an airport against enemy drone attacks. We develop a user interface to allow humans to assist AI agents effectively. We demonstrated that agents learn faster while learning from policy correction compared to learning from humans or agents. Furthermore, human-AI collaboration requires lower mental and temporal demands, reduces human effort, and yields higher performance than if humans directly controlled all agents. In conclusion, we show that humans can provide helpful advice to the RL agents, allowing them to improve learning in a multi-agent setting.


PULSAR: Graph based Positive Unlabeled Learning with Multi Stream Adaptive Convolutions for Parkinson's Disease Recognition

arXiv.org Artificial Intelligence

Parkinson's disease (PD) is a neuro-degenerative disorder that affects movement, speech, and coordination. Timely diagnosis and treatment can improve the quality of life for PD patients. However, access to clinical diagnosis is limited in low and middle income countries (LMICs). Therefore, development of automated screening tools for PD can have a huge social impact, particularly in the public health sector. In this paper, we present PULSAR, a novel method to screen for PD from webcam-recorded videos of the finger-tapping task from the Movement Disorder Society - Unified Parkinson's Disease Rating Scale (MDS-UPDRS). PULSAR is trained and evaluated on data collected from 382 participants (183 self-reported as PD patients). We used an adaptive graph convolutional neural network to dynamically learn the spatio temporal graph edges specific to the finger-tapping task. We enhanced this idea with a multi stream adaptive convolution model to learn features from different modalities of data critical to detect PD, such as relative location of the finger joints, velocity and acceleration of tapping. As the labels of the videos are self-reported, there could be cases of undiagnosed PD in the non-PD labeled samples. We leveraged the idea of Positive Unlabeled (PU) Learning that does not need labeled negative data. Our experiments show clear benefit of modeling the problem in this way. PULSAR achieved 80.95% accuracy in validation set and a mean accuracy of 71.29% (2.49% standard deviation) in independent test, despite being trained with limited amount of data. This is specially promising as labeled data is scarce in health care sector. We hope PULSAR will make PD screening more accessible to everyone. The proposed techniques could be extended for assessment of other movement disorders, such as ataxia, and Huntington's disease.


PARK: Parkinson's Analysis with Remote Kinetic-tasks

arXiv.org Artificial Intelligence

We present a web-based framework to screen for Parkinson's disease (PD) by allowing users to perform neurological tests in their homes. Our web framework guides the users to complete three tasks involving speech, facial expression, and finger movements. The task videos are analyzed to classify whether the users show signs of PD. We present the results in an easy-to-understand manner, along with personalized resources to further access to treatment and care. Our framework is accessible by any major web browser, improving global access to neurological care.


Using AI to Measure Parkinson's Disease Severity at Home

arXiv.org Artificial Intelligence

We present an artificial intelligence system to remotely assess the motor performance of individuals with Parkinson's disease (PD). Participants performed a motor task (i.e., tapping fingers) in front of a webcam, and data from 250 global participants were rated by three expert neurologists following the Movement Disorder Society Unified Parkinson's Disease Rating Scale (MDS-UPDRS). The neurologists' ratings were highly reliable, with an intra-class correlation coefficient (ICC) of 0.88. We developed computer algorithms to obtain objective measurements that align with the MDS-UPDRS guideline and are strongly correlated with the neurologists' ratings. Our machine learning model trained on these measures outperformed an MDS-UPDRS certified rater, with a mean absolute error (MAE) of 0.59 compared to the rater's MAE of 0.79. However, the model performed slightly worse than the expert neurologists (0.53 MAE). The methodology can be replicated for similar motor tasks, providing the possibility of evaluating individuals with PD and other movement disorders remotely, objectively, and in areas with limited access to neurological care.